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Preface

An important aspect of multi agent systems are agent reasoning techniques for
problem solving, either at the level of a single agent or at the level of distributed
collaboration amongst multiple agents.

Constraint Satisfaction Problems (CSP ) prove to be a generic framework
which can be applied for modeling and solving a wide range of combinatorial ap-
plications as planning, scheduling and resource sharing in many practical domains
such as transportation, production, mass marketing, network management and
human resources management. Constraint satisfaction techniques provide efficient
algorithms to prune search spaces and it is a paradigm for combinatorial prob-
lem solving. As a problem solving technology, constraint satisfaction problems
framework is a reasoning technique. In this work we study constraint satisfac-
tion techniques for solving and solution adaptation that can be applied to agent
reasoning.

Most work in constraint satisfaction has focused on computing a solution to
a given problem. In practice, it often happens that an existing solution needs to
be modified to satisfy additional criteria or accommodate changes in the problem.
For example, a schedule or plan might have to be adjusted when a resource is
missing.

The concept of interchangeability characterizes symmetries among the prob-
lem entities and thus facilitates making local changes to CSP solutions. The first
part of this work studies how the concept of interchangeability can define (provide)
methods for solution adaptation. In general, interchangeability is only partial and
thus localizes changes to sets of variables, which we call dependent sets. This study
presents concepts for characterizing, and algorithms for computing, partial inter-
changeability in CSPs using the dependent sets. We present novel algorithms for
generating the minimal dependent sets for a desired interchangeability, and the
minimum thereof. Furthermore we define a new interchangeability concept, tuple
interchangeability, which characterizes equivalent partial solutions in a CSP . We
present algorithms for computing this new interchangeability concept and study its
dependence on the problem structure. Based on dependent sets and interchange-
able tuples, we develop techniques for adapting solutions in applications such as
replanning, rescheduling, reconfiguration, etc., which are important techniques for
agent-based reasoning.
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Classical CSPs show limitations in knowledge modeling because they are
not flexible enough to model real-life scenarios when the knowledge is neither com-
pletely available nor crisp. Moreover, interchangeability for soft CSPs is defined
and algorithms for its computation are given. We study the occurrence of different
forms of interchangeability in soft CSPs depending on the problem structure and
the relaxation allowed.

Besides applying constraint solving techniques to agent reasoning, another
aspect of this research is the study of solution adaptation algorithms based on
cooperative agents solving. Search methods are implied for solution adaptation in
distributed constraint satisfaction problems where the computational effort can
be reduced by the use of multiple agent collaboration. Thus, in distributed envi-
ronments we show how multi agent systems can collaborate for solving and com-
puting interchangeability of constraint satisfaction problems which are distributed
amongst the population.

When the problem knowledge is evolving in time and thus the environment is
dynamic we study how and when interchangeability can adapt a solution in order
to avoid computation from the scratch.

In the last part, we present another method for agent reasoning based on
a Case Based Reasoning (CBR) framework. CBR can also enrich agent reason-
ing with learning capabilities. Moreover, we propose a generic framework for case
adaptation where the knowledge domain can be represented as constraint satis-
faction problems.
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Chapter 1

Introduction

In the last three decades distributed artificial intelligence (DAI) became an impor-
tant research area which brings together concepts from many domains including
artificial intelligence, computer science, sociology, economics and management sci-
ence. It is difficult to cover all these DAI aspects in a definition, but according to
Weiss [100], DAI can be characterized as the study, construction, and application
of multi–agent systems, that is systems in which several interacting, intelligent
agents pursue some set of goals or perform some set of tasks.

Based on agent entities, DAI systems long–term goal is to to develop mecha-
nisms and methods that enable intelligent agents to interact with the environment
or among them as well as humans, and to understand interaction among intelligent
entities whether they are computational, human or both.

In general, there is no consensus on a commonly accepted definition of what
an agent is and what are, or should be, its main properties. However, the common
colloquial understanding is that the term agent indicates an entity (person, orga-
nization, system, etc.) that acts (1) on behalf of some other entity (an owner),
(2) in an autonomous fashion. Thus, an agent is given the mandate to achieve
defined goals. To do this, it autonomously selects appropriate actions, depending
on the prevailing conditions in the environment, based on its own capabilities and
means until it succeeds, fails, needs decisions or new instructions or is stopped by
its owner.

A generic definition was given by Wooldridge in [102], with some further
adaptation in [61]:

An agent is a computer system that is situated in some environment, and that
is capable of autonomous action in this environment in order to meet its design
objective.

An important characteristic of a software agent is its ability to interact with
other agents. Agent activities can be affected by other agents and perhaps by
humans. For consistent interaction between agents, goal and task–oriented coordi-
nation methods have been considered. Two types of interaction have been distin-
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guished for agents coordination: cooperation – several agents try to combine their
efforts, goals as an entire group and not as individuals, and competition – several
agents try to get what only some of them can have. A variety of coordination
mechanisms, some of them including explicit exchange of information often given
in the form of structured messages, have been proposed in the MAS context, such
as organizational structuring, contracting, planning and negotiation techniques1.

The main focus of in this book is studying collaborative agents coordina-
tion for problem solving where the knowledge can be represented as Constraint
Satisfaction Problems (CSPs). More precisely, we propose techniques/algorithms
based on collaborative multi agent systems for solution adaptation in CSPs.

Moreover, an agent acts as an intelligent entity when it manifests flexibil-
ity and rationality in various environmental circumstances given its perceptual
and effectual equipment. Agent flexibility and reasoning characteristics can be ob-
tained based on techniques such as planning, decision making, problem solving,
and learning.

In this book, we investigate mainly problem solving techniques based on
constraint satisfaction processing for agent reasoning where we consider the do-
mains which can represent agent knowledge and problems in constraint satisfac-
tion terms. Moreover, we explore problem symmetries in order to adapt already
known solutions. Based on these techniques agent reasoning can improve its plan-
ning, problem solving or decision making strategies through adaptation of already
known solutions.

Constraint networks and constraint satisfaction problems [62] have been stud-
ied in Artificial Intelligence since the seventies and proved to be some of the most
successful problem–solving paradigms in Artificial Intelligence. Moreover, they
provide a generic approach for modeling a wide range of real–world problems.

Symmetry breaking in CSPs has attracted much attention in recent years
and has proven to be important for CSPs solving, problem representation, ab-
straction, or reformulation. We investigate the interchangeability concept which
characterizes equivalence relations among a problem entities, i.e. one variable val-
ues. In general, interchangeability might be only partial and also require changes
in values assigned to other variables.

Based on the interchangeability relation we characterize the possibilities for
making local changes in CSP solutions. Furthermore, these techniques can be
used in solution adaptation for agent reasoning, where the agent has to consider
replanning, reconfiguration, decisions remaking, rescheduling, case adaptation etc.
in its reasoning process.

When the constraint satisfaction problem is not centralized but distributed
in different locations, enhanced techniques of distributed problem solving have to
be considered. Distributed constraint satisfaction problems are part of distributed
artificial intelligence (DAI) domain. These problems are usually treated when
the constraint satisfaction problem has variables, constraints or both distributed

1For a good survey on coordination in MAS we recommend Chapter 3 of [37].
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among a set of independent but communicating agents. We propose algorithms
based on collaborative agents for computing problem symmetries characterized by
the interchangeability concept. These symmetries can be used for adapting already
known solutions of distributed constraint satisfaction problems.

These techniques are also extended to another CSP variant which appears in
dynamic environments. In dynamic CSPs, variables and constraints may evolve
gradually in time. Usually problems and knowledge in multi agent system do not
present static characteristics and it is more likely that the information is changing
with time. Computation tools for dynamic environments gives more flexibility
to agent reasoning. We propose algorithms for computing interchangeability in
dynamic environments and furthermore, interchangeability–based algorithms for
solution adaptation in dynamic CSPs.

In many practical problems, constraints might be violated at a certain cost
with the solution being the one with the lowest cost in terms of constraint viola-
tions. In some others, preferences might be expressed on constraints or variables
values and the solution the one which maximize them over all preferences. For
expressing costs and preferences, constraint optimization problems (COPs), called
also Soft Constraints Satisfaction Problems (SCSPs), might need to be used. In
many multi agent systems applications we need to express and optimize cost and
preferences. We define interchangeability for soft constraint satisfaction problems
and express its use in agent reasoning.

1.1 Constraint Satisfaction Problems and the

Interchangeability Concept

Constraint satisfaction is a powerful computational paradigm which proposes tech-
niques to find assignments for problem variables subject to constraints on which
only certain combinations of values are acceptable. The success and the increasing
application of this paradigm in various domains mainly derive by the fact that
many combinatorial problems can be expressed in a natural way as a Constraint
Satisfaction Problem (CSP ), and can subsequently be solved by applying pow-
erful CSP techniques. Thus, Constraint Satisfaction Problem (CSP ) framework
can be applied to a wide range of problems [49], [40], well known examples are: di-
agnosis [103], planning [56], scheduling [92], design [45], image understanding [94],
robot control [63], and configuration [97].

The literature shows a large variety of algorithms for solving constraint sat-
isfaction problems, and these are applied with great success in practice [93].

In certain settings, it is important not to generate solutions, but to modify
an existing solution so that it satisfies additional or revised objectives. Based on
the concept of interchangeability, we develop methods for solution adaptation.

Interchangeability is an interesting but relatively little explored concept in
constraint satisfaction. Interchangeability has mostly been applied as a technique
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for enhancing search and backtracking. It has not been effectively exploited as
a technique for updating solutions although it has been the main motivation for
studying it. In this work, we study how interchangeability can be applied for up-
dating solutions by localizing changes in the CSP and identifying the possibilities
it offers for classifying solutions.

In general, interchangeability is only partial, meaning that two values are
symmetric/interchangeable in CSP solutions with possible exceptions in a local-
ized set of variables. We call these dependent sets and use them to characterize
partial interchangeability. We study aspects of partial interchangeability, as de-
fined by the dependent sets, in discrete finite constraint satisfaction problems and
their utility in practical applications.

Partial interchangeability has direct applications based on the fact that the
dependent sets determine which other variables may be affected by a local change
to a problem solution. This can be exploited, for example:

• in interactive configuration systems, where it is possible to show what parts
of a solution might be affected by a local change [97],

• in distributed problem solving, where it is possible to limit the set of agents
that a change has to be coordinated with, and also to make local changes so
that they do not spread through the entire problem, as shown by Petcu and
Faltings [73],

• in constraint–based control systems, where it is possible to choose control
actions that have effects that are as local as possible,

• in problem abstraction, where a critical variable and the dependent set for
making its domain interchangeable provide meta–variables, similar to the
compilation technique in [98].

Problem abstraction and reformulation are fundamental, powerful concepts
in artificial intelligence. As interchangeability is a form of symmetry among vari-
able values in constraint satisfaction problems, it applies and provides a rigorous
approach to problem abstraction and reformulation. Interchangeability techniques
provide methods for operating with compact representation of large sets of so-
lutions. Moreover, by using interchangeability we can permit more efficient solu-
tions solving for the abstracted problem. Finally, these solutions can be expanded
into smaller reformulations of the original problem. In prior work, some forms of
interchangeability such as neighborhood interchangeability and context dependent
interchangeability, proved to be efficient for problem abstractions and reformula-
tions [25], [43], [95]. Unfortunately these forms of interchangeability are pretty rare
in practice. More tools for abstraction and reformulation can be developed based
on partial interchangeability which occurs more often in constraint satisfaction
problems.

Some of the practical applications where solution adaptation based on inter-
changeability can be used are enumerated as follows:
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• case–based reasoning, where a solution to an earlier problem can be adapted
to a new scenario [69],

• rescheduling, where a schedule must be changed to accommodate unforeseen
events,

• reconfiguration, where an existing product is to be adapted to different cus-
tomer needs, see [68] and [97].

• replanning, where a plan has to be adjusted to compensate for a missing
resource.

It has been also proven that interchangeability can improve search in con-
straint problems [5], either as a precomputing technique or during search. More-
over, it has been shown to improve search when all CSP solutions need to be
found, as in Choueiry [27].

There is a huge amount of research on searching CSP solutions, but few
of them consider the relations between CSP solutions, as in [25] and [99]. This
motivates the study of partial interchangeability for classifying solutions.

In many real–life scenarios, standard CSPs prove to be not flexible enough
for situations when the information is neither completely available nor crisp. Soft
constraint satisfaction problems allow the modeling of constraint satisfaction with
preferences, costs, or probabilities. Therefore, there is a need to study interchange-
ability on Soft CSPs in order to improve solving, reformulation and abstraction
of the aforementioned problems. All interchangeability properties from standard
CSPs are contained in soft CSPs and due to soft CSP flexibility more flexible
forms of interchangeability can also be defined.

1.2 Solution Adaptation Methods and Agent Reasoning

Based on the generality of constraint satisfaction framework for modeling and
solving combinatorial problems, interchangeability and solution adaptation be-
come important concepts to be studied. Solving combinatorial problems usually
involves a significant computational effort; we study here how and when solution
adaptation based on interchangeability can be applied and be more efficient than
solving the problem from scratch. Agent reasoning based on constraint satisfaction
can be thus improved by applying solution adaptation when tackling rescheduling,
replanning, reconfiguration, diagnosis review, case adaptation, etc., problems.

The main foci and contributions of this book are described as follows.

1.2.1 Interchangeability in Crisp CSPs

Interchangeability in crisp CSPs, where constraints are satisfied or not, has proven
to be important for many CSP aspects such as improving search and backtrack-
ing in CSP solutions, CSP abstraction and reformulation, interactive problem–
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solving and explanation. Much of this work is based on aspects of interchangeabil-
ity localized to a single CSP variable, with minimal effort in studying partial as-
pects of interchangeability, which concerns a set of variables. Goals of this research
are to define partial interchangeability in standard CSPs, to propose algorithms
for its computation, and finally to study its occurrence and feasibility in practical
applications. Regarding partial interchangeability concept our contributions are:

• We present novel algorithms for generating minimal, and the global mini-
mum, dependent sets for a desired interchangeability.

• We define partial interchangeable solutions, which we called tuple inter-
changeability and give complete algorithms for its computation.

We describe the application of these partial interchangeability algorithms to
randomly generated problems in order to study partial interchangeability occur-
rence and feasibility in practice.

1.2.2 Interchangeability in Soft CSPs

Standard CSPs can be often too strict and not convenient for real–life problems.
That is why for a decade there has been a huge interest in working on and using
Soft CSPs for modeling these problems. Soft CSPs allow the use of preferences,
costs or probabilities over the tuples of values.

Our main contributions are:

• We define interchangeability for Soft CSPs.

• We propose algorithms for computing interchangeability in Soft CSPs.

• We study how soft interchangeability can improve search in Soft CSPs.

1.2.3 Interchangeability in Distributed CSPs

As the centralization of information might require huge effort for gathering infor-
mation or may violate privacies, solving distributed constraint satisfaction prob-
lems becomes an important research task. A Distributed CSP (DCSP ) is a CSP
in which the variables and constraints are distributed among distinct autonomous
agents [106]. Each agent has one or multiple variables and tries to determine
its/their value/s.

In this research work, we study the following aspects:

• We propose algorithms for computing interchangeability in distributed envi-
ronments through the use of collaborating agents.

• We adapt the algorithms for computing partial interchangeability to distrib-
uted multi agents computation.
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1.2.4 Interchangeability in Dynamic CSPs

In static CSPs, the variables involved in the problem and the constraints between
them do not change over time. But this is not the case for real world applications
where the variables and constraints may evolve. This type of CSP is usually called
Dynamic CSP . There are many attempts to adopt algorithms from static CSP to
dynamic CSP as well as new methods and approaches. Interchangeability deals
with computation of propagation of change through the CSP and thus its study
in dynamic environments comes as a natural and important research approach.
Moreover, multi agent environments are more likely to change with time and thus,
agent reasoning necessitates adaptation methods such as interchangeability. We
propose algorithms for computing regular and partial interchangeability for dy-
namic environments.

1.2.5 Case Base Reasoning – Adaptation Process

When agent reasoning cannot be expressed by choice making, other reasoning
techniques might be needed. Here we study a recent approach to problem solving
and learning that has received a lot of attention over the last few years: case based
reasoning.

• While there are many general frameworks for indexing and retrieval in
CBR systems, case adaptation remains a domain–dependent task. We pro-
pose here a generic case adaptation method for the domain of problems for
which the knowledge can be represented as constraint satisfaction. We apply
interchangeability–based methods for updating solutions during adaptation
process.

• We extend the framework for case adaptation to CBR systems where the
knowledge domain can be expressed as Soft CSPs.

1.3 Constraint Satisfaction and Agent Reasoning

Solving a problem implies defining and making choices. In this perspective, mod-
eling agent reasoning by making use of CSP methods and techniques requires:

• Representing problem solving or agent reasoning options in terms of choice
making – i.e., identify variables v1, v2, . . . vi.

• Gather and process information about possible choices – i.e., values variables
can possibly take, grouped in domains D1, D2, . . .Di – and related con-
straints, where a constraint is defined by a predicate pk(vk1, . . . , vkn) that is
true if and only if the value assignment of all vki satisfies this constraint.

• Access and apply appropriate problem solving techniques (many CSP algo-
rithms are available) to determine the set of possible combinations of choices
by taking into account existing constraints.
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The techniques for solving CSPs can be subdivided in two main groups:
search (e.g., backtracking and iterative) algorithms and inference (e.g., consistency)
methods [65]. Consistency algorithms are pre–processing procedures that are in-
voked before search algorithms. Backtracking methods construct a partial solution
(i.e., they assign values to a subset of variables) that satisfies all of the constraints
within the subset. This partial solution is expanded by adding new variables one
by one. When for one variable, no value satisfies the constraints between the
partial solution, the value of the most recently added variable is changed, i.e.,
backtracked. Iterative methods do not construct partial solutions. In this case, a
whole flawed solution is revised by a hill–climbing search. States that can violate
some constraints, but in which the number of constraint violations cannot be de-
creased by changing any single variable value (i.e., local–minima) can be escaped
by changing the weight of constraints and/or restarting from another initial state.
Iterative improvement is efficient but not complete.

In CSP terms, the assignment of one of the values from a domain Di to a
variable vi corresponds to making a choice. Therefore, if agent reasoning is mod-
eled following a CSP–based approach, an agent decision is taken when a choice
for an agent’s variable is made. Whenever some constraints involve variables con-
trolled by distinct agents, agent–to–agent interactions may need to be triggered.
Furthermore, if there are no possible choices to be made within the existing set
of constraints, i.e., over–constrained problem, an agent can try to relax some con-
straints by interacting (e.g., negotiating) with other agents, humans, environments,
etc.

As detailed in [21], constraints are used for modeling a description of a desired
goal state an agent aims to achieve, and for expressing states of the world involving
interdependent choices. In this perspective, an agent’s decision making process has
been broken down into three main steps: problem modeling, information gathering
and combination, and problem solving.

Problem modeling corresponds to identifying the choices to be made, accord-
ing to the agent’s state and its perception of the world’s state, which become the
variables in the problem formulation. Then it is necessary to identify which op-
tions are available for each of the choices – this generates the domains of values
for each of the variables, and finally specify how choices are related – generating
and collecting the constraints (relations and exclusions) which apply to problem
solutions. Information gathering and thereby combination can involve interaction
with other agents. To simplify this step we developed and adopted the Constraint
Choice Language [101]. The final choice problem, with all values and constraints
gathered, represents a well defined search and solution space. Every valid solution
in such space is an acceptable combination of choices (or actions/plans) the agent
could make (or execute) according to its goals.

CSPs have established themselves as a powerful formalism for expressing
problems involving multiple interdependent choices. Although some experience is
required with this domain, modeling agent reasoning in CSP terms is in general
intuitive and most importantly generates problem descriptions with well defined
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properties and well studied solution techniques – i.e., many CSP algorithms, tech-
niques, libraries and engines are available and ready to be deployed.

In [64], a constraint–based agent framework is proposed for designing, sim-
ulating, building, verifying, optimizing, learning and debugging controllers for
agents embedded in an active environment. This framework provides a model for
the constraint–based design of embedded intelligent systems, agents, that func-
tion in a dynamic, coupled environment. In this model, each agent contains a con-
straint based controller which communicates with the agent environment through
an interface which they call agent body. According to the reports regarding the
environment received from the agent body and its internal specified constraints,
the controlled based on a constraint solver determines the next agent actions.

An interesting approach combining constraint logic programming and a data
model approach, to provide agents with a flexible way to plan and direct their
actions and to manipulate and represent its knowledge is described in [22]. The
author explores the declarative use of constraints within a BDI Agent frame-
work to represent knowledge as complex quantified constraints and apply these
techniques to a courier scenario where cooperating agents communicate, delegate
and exchange desires and information using Generalized Partial Global Planning
mechanisms to solve a given set of tasks.

However, not always and/or not entirely agent logic can be properly captured
and expressed in terms of choice making. For instance, when values to assign to
variables are not necessarily known a priori, it may be more opportune to adopt
other reasoning approaches, like for instance case–based reasoning techniques [59].

1.4 Outline

In this book we study techniques for agent reasoning mainly based on constraint
satisfaction methods and case based reasoning framework. Whereas both of these
techniques provide problem solving capabilities to agent reasoning, case base rea-
soning also enriches it with learning capabilities.

In the following we outline the main subjects presented in each chapter.
Chapter 2 gives basic and formal definitions for interchangeability in crisp

CSPs together with algorithms for its computation. In this chapter we present
and discuss also related work of interchangeability in crisp CSPs. Furthermore,
we study different aspects of partial interchangeability in standard CSPs. We
present algorithms for computing minimal, and global minimum, dependent set
for a given interchange and study their properties and occurrence relatively to the
problem structure. Moreover, we define a new form of partial interchangeability
which we call tuple interchangeability, which characterizes equivalent partial so-
lutions of constraint satisfaction problems. We give polynomial algorithms for its
computation, and study their properties relatively to the problem structure.

In Chapter 3, we define and extend various forms of interchangeability from
crisp CSP to the Soft CSP framework. We give and extend interchangeability
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algorithms to Soft CSPs. We define two more relaxed forms of interchangeability,
which we call α–interchangeability and δ–interchangeability. We study based on
empirical tests how all these forms of interchangeability depend on the problem
structure.

Chapter 4 presents formalization of interchangeability algorithms in non–
centralized, distributed environments. The computation is realized by collabora-
tive agents.

In Chapter 5, we extend the computation of interchangeability for non–static,
dynamic environments where the knowledge of the problem may evolve in time.
We study how can interchangeability techniques can help agent reasoning to adapt
solutions after the problem slightly change instead to recompute the solution from
the scratch.

In Chapter 6, we present a generic tool for case adaptation process in case–
based reasoning systems where the knowledge domain can be represented as con-
straint satisfaction.

Chapter 7 presents conclusions of the research topics addressed in this book
and gives further research directions.



Chapter 2

Interchangeability and Solution
Adaptation in Crisp CSPs

Most work in constraint satisfaction has concentrated on computing a solution to
a given problem. In practice, it often happens that an existing solution needs to be
modified to satisfy additional criteria or changes in the problem. For example, a
schedule or plan might have to be adjusted when a resource is missing. The concept
of interchangeability characterizes the possibilities for making local changes to
CSP solutions.

The main purpose of this research is to define methods for localizing changes
in already known solutions in order to reduce further search effort by solution
adaptation. Moreover, these methods can provide techniques for classifying solu-
tions.

Basic interchangeability notions and algorithms are given in Section 2.2.
Most of these are motivated by applying interchangeability for a certain goal:

in Freuder [5], Haselbock [48], Choueiry and Davis [27], Lal and Choueiry [57] for
improving search, in Choueiry [25] for abstraction, in Weigel and Faltings [97] for
solution adaptation, etc.

In this work we want to study the concept by itself. We study how this concept
characterizes the possibilities for making local changes in CSP solutions, how it
characterizes the properties of the solution space aiming classification of solutions,
how often it occurs depending on the problem parameters and its applicability in
various domains as those enumerated previously.

2.1 Introduction

In previous work neighborhood interchangeability, which characterizes equivalence
relations among one variable values, was accurately studied and proved to improve
search [5], abstractions [25] and solution adaptation [97]. Unfortunately, it occurs
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mainly in sparse CSP, with CSP density 1 lower than 0.4, as showed by Benson
and Freuder [5] and Choueiry et al. [25].

In general, interchangeability tends to be partial in more dense CSPs and
thus, requires changing values assigned to other variables. Partial interchangeabil-
ity (PI) was defined by Freuder in [41]. It is a weaker form of interchangeability
based on the idea that when a value for a variable Xi changes, values for other
variables may also differ among themselves but be interchangeable with respect
to the rest of the problem.

A polynomial algorithm for computing neighborhood partial interchangeability
(NPI) was proposed by Choueiry and Noubir in [28]. It is an algorithm which
localizes the change to a set of variables by determining their values which satisfy in
the same way the neighborhood of the set and thus, the entire CSP . The problem
here consists in choosing the set of variables S on which to apply the algorithm
proposed by them for computing NPI and called the Joint Discrimination Tree
(JDT ) algorithm.

In the following, we study algorithms that approximate partial interchange-
ability (PI). First, we investigate how an exchange of values in one variable requires
modifications to the assignments of other variables in order to localize the change.
We call this the dependent set and give algorithms that compute minimal and the
globally minimum dependent set for a desired interchange. We show on randomly
generated problems that partial interchangeability tends to be frequent and that
the dependent sets are generally of manageable size.

Further, we define and give algorithms for computing interchangeable par-
tial solutions, which we call interchangeable tuples. We also study, on randomly
generated problems, the occurrence of tuple interchangeability depending on the
problem structure. We show they are frequent, of manageable size and conclude
that they can be useful in practical applications.

2.2 Related Work

The interchangeability concept was defined by Freuder in [41], and character-
izes symmetries among the variable values. Freuder introduced a classification
of different types of value symmetries in CSPs in [41] under the interchange-
ability concept, in particular: full/neighborhood interchangeability and partial in-
terchangeability, categorizes them and gives efficient algorithms for neighborhood
interchangeability (NI). This algorithm finds all the equivalence classes of variable
values, considering all the constraints of the current variable with the neighbor-
hood.

1The density of binary CSP is defined as the ratio of the number of constraints relatively
to the minimum and maximum number of constraints allowed in the given CSP : dens–csp =

e−e min
e max−e min

, where e represents the number of edges in the current CSP , e min = n − 1 the

minimum number of constraints in the CSP, e max =
n(n−1)

2
the maximum number of constraint

and n is the size of the problem CSP .
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A weaker form of neighborhood interchangeability was proposed by Hasel-
bock in [48]. He proved that the neighborhood interchangeability related to only
one constraint can be advantageously exploited in backtracking searches with or
without forward checking for finding all the solutions of the CSP . He also showed
how to classify solutions according to this kind of interchangeability, and usefulness
of interchangeability for arc consistency.

As cited also in [27], various CSP symmetry types with the aim of improving
search have been studied by Glaisher [47], Brown et al. [18], Fillmore et al. [39],
Puget [74]. They consider exact symmetries specific to a class of problems, i.e. the
‘N queens problem’ and explore them during search. Later, Ellman [36] proposed
to also include necessary and sufficient approximations of symmetry relations.

In its introduction by Freuder [41], interchangeability’s main goal was also
to improve search of CSP solutions and in this paper it is proved theoretically.
Furthermore, it was studied and shown practically by Benson and Freuder in [5]
that interchangeability can improve forward checking searches. They apply inter-
changeability as a preprocessing technique before searching in order to eliminate
redundant values.

In search, interchangeability proves to be effective as has been shown by
Choueiry and Davis in [27] for finding first solution and in [29] where they prove
it theoretically. In [57], Lal and Choueiry prove that dynamic interchangeability
during backtrack search for finding first or all solutions is always beneficial.

Interchangeability has been also investigated by Choueiry and Faltings in [25]
and [24], Freuder and Sabin in [43], and Weigel and Faltings in [98] for problem
abstraction. In [24], Choueiry and Faltings show that interchangeability sets are
abstractions of the CSPs, reduce the computational complexity and thus improve
the search, and also facilitates the identification of elementary components for
interaction with the users. In [98], Weigel and Faltings use techniques which rely
on value interchangeability to achieve more compact problem representations.

Weigel and Faltings used interchangeability for compacting solutions in [96],
and in [99], they propose methods for classifying solutions based on context de-
pendent interchangeability.

In general, interchangeability is only partial and also requires changing values
assigned to other variables. This aspect of partial interchangeability has been
studied by Choueiry and Noubir in [28] and Neagu and Faltings in [69].

Solution update techniques have been studied also in planning by Nebel and
Koehler in [70]. In this study they make a comparative worse–case complexity
analysis of plan generation and reuse under different assumptions. Their study
reveals that there is not possible to achieve a provable efficiency gain of reuse over
generation.

Otherwise, in constraint satisfaction problems some previous research has
been shown that there are update techniques which can be more efficient than
recomputation of the solution. In [97] and [69] it is shown that interchangeability–
based techniques provide efficient and generic methods for case adaptation in
configuration. Moreover, in [69] it has been studied how solution adaptation tech-
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niques can be applied for case adaptation and can model hidden preferences in a
case–based reasoning system.

As already mentioned, interchangeability proved to increase search efficiency
in centralized CSPs. In the later distributed constraint satisfaction problems stud-
ies, it has been shown by Petcu and Faltings [73] that interchangeability techniques
can significantly reduce the number of cycles required to solve the problems and
thus, to increase search efficiency.

Recently, Hentenryck et al. [50] identify three classes of CSPs that are prac-
tically relevant and for which symmetry breaking is tractable in polynomial time
and space. These CSP classes present various forms of value interchangeability.
Under the assumption that the modelers are aware of the symmetries in their ap-
plications, it is shown that symmetry breaking can be performed in constant time
and space using dedicated search procedures.

Interchangeability is now also studied for other CSP variations as Soft
CSPs [9]. Soft constraint satisfaction framework is a generalization of crisp CSP
in which the constraints are not categorical but preferences, costs or probabili-
ties. The Soft CSP is then an optimization problem in the space of all possible
instantiations of the CSP variables. Potentially, most real–life problems can be
modeled as Soft CSPs. In [31] Cooper shows how fuzzy CSP can be reduced
to the computation of several CSP and how neighborhood substitution in CSPs
can be generalized to fuzzy neighborhood substitution in Fuzzy CSPs, where the
aggregation operator is strictly monotonic or idempotent.

2.3 CSP and Interchangeability Background

2.3.1 Standard CSPs Definitions

Definition 2.1 (CSP ) A CSP is defined by P = (X, D, C ), where X = {X1, X2,
. . . , Xn} is the set of variables, D = {DX1, DX2, . . . , DXn} the set of domains
(i.e., sets of values) associated with the variables, and C is the set of constraints
that apply to the variables in X.

The task is to find an assignment of a value to each variable such that all
the constraints are satisfied.

In other words, Constraint Satisfaction Problems (CSPs) involve finding
values for variables subject to constraints on which combinations of values are
permitted. As Bacchus and van Beek proved in [2] that any non–binary constraint
satisfaction problem can be transformed to a binary one, without loss of generality
in this work, we consider problems which can be modeled as discrete binary CSPs.
These are problems where each domain contains a finite set of discrete values
and constraints are never between more than two variables. In crisp CSPs the
constraints are hard, where for specific values assigned to the variables involved in
the constraint, the constraint is either satisfied or not.
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2.3.2 Interchangeability Definitions for crisp CSPs

The concept of Interchangeability formalizes equivalence relations among objects,
respectively the values of the variables in a CSP . According to Freuder [41], the
main interchangeability types are defined as follows:

Definition 2.2 (Full Interchangeability – FI) [Freuder 1991] Values Xi = a and
Xi = b are fully interchangeable if for any solution where Xi = a, there is an
otherwise identical solution where Xi = b, and vice versa.

This means that by exchanging values a and b for variable Xi in a given
solution, the solution will remain a valid solution of the CSP (without requiring
changes to the other variable assignments). No efficient general algorithm for com-
puting FI values in a CSP is known; this might require the computation of all
solutions [41].

For more computable approaches some localized interchangeability forms
have been defined. Neighborhood Interchangeability considers only the constraints
involving a certain variable Xi, and is defined as follows:

Definition 2.3 (Neighborhood Interchangeability – NI) [Freuder 1991] Two values
Xi = a and Xi = b are neighborhood interchangeable (NI) for variable Xi iff for
every constraint C on Xi: {i|(a, i) satisfies C} = {i|(b, i) satisfies C}.

For example, in the problem in Figure 2.1, values r and z of variable X5

are neighborhood interchangeable (NI), as they satisfy in the same way the con-
straints of X5 with the neighborhood. Thus, by interchanging r and z for variable
X5 in any solution does not require any changes in any other variable in order to
maintain the solution.

NI concept is important because any values that are NI are also fully inter-
changeable. Thus, as NI implies FI, we can approximate FI by just computing
the neighborhood interchangeability. Not all FI values are detected by NI.

FI/NI interchangeability is quite rare in practice. Usually, exchanging values
also requires making changes elsewhere in the solution. This concept was defined
by Freuder in [41] saying that two values are partially interchangeable with respect
to a set S of variables, iff any solution involving one implies a solution involving
the other with possibly different values for S.

Definition 2.4 (Partial Interchangeability – PI) [Freuder 1991] Two values Xi = a
and Xi = b are partially interchangeable (PI) for variable Xi iff any solution
involving one implies a solution involving the other with possibly different values
in S.

We call Xi the critical variable, the set I = {a, b} the interchangeable set and
the set S the dependent set.

The example in the Figure 2.1, values w and s for variable X5 are partially
interchangeable with respect to the dependent set of variables S = {X4}. Thus,
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when interchanging values w and s for X5 necessitates probably changes in variable
X4, in order to remain solution. For example, if variable X4 has value s when w
is interchange with value s for variable X5, variable X4 has to change its value as
well in order to maintain consistency in constraint with X5.

{ x, y , v, t} { x, y , z, q }

{ t, v, z, q, y}
{ t}

{ y, w, s}

X4

X0 
X2 

X1 X3

X5

{ r, z, w, s}

Figure 2.1: Example of a CSP problem.

A localized algorithm for computing PI was proposed by Choueiry and
Noubir [28] under the name neighborhood partial interchangeability (NPI). Follow-
ing the NPI concept proposed by Choueiry and Noubir, we formalize its definition
as follows:

Definition 2.5 (Neighborhood Partial Interchangeability – NPI) [Choueiry 1998]
Values Xi = a and Xi = b are NPI with respect to a set of variables S if they are
NI in the problem where all the variables in S have been removed.

For example in Figure 2.1, we find that the values of the interchange-
able set I = {z, q} for the critical variable X3 are neighborhood partial
interchangeable(NPI) with respect to set S = {X2}. This result can be computed
using the algorithm based on Joint Discrimination Tree proposed by Choueiry and
Noubir in [28].

This neighborhood localized algorithm might not find all the values which
are partially interchangeable in the whole problem.

NPI algorithm applies to a set S of CSP variables but there are no specific
methods for choosing the set S.

The set S in the Definition 2.5 gives the set of variables which have to change
so that the solution remain consistent. It is generally interesting to keep it as small
as possible. We define:

Definition 2.6 (Dependent Set) The set S of variables in Definition 2.5 is called the
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dependent set of the interchangeability Xi = a/b. The set S is a minimal dependent
set (MDS) if no subset of S is also a dependent set for the same interchangeability.
It is a minimum dependent set (mDS) if there is no dependent set with a smaller
cardinality.

For characterizing the flexibility of making changes to a CSP solution, min-
imum dependent sets are most useful as they define the variables affected by the
change.

2.3.3 Interchangeability Basic Algorithms

In the following we recall the Neighborhood Interchangeability (NI) algorithm pro-
posed by Freuder [41].

The NI algorithm computes neighborhood interchangeable values by con-
structing the so called Discrimination Tree (DT ) structures for each of the CSP
variable. The construction of the DT proceeds in the following way: For each value
of the variable, we build a path containing in its nodes consistent values of vari-
ables in the neighborhood. Each time we start the process from the root node of
the tree. For each neighboring variable value a node is constructed, but in the
case it already exists in the next node of the path the algorithm just makes the
move to the node. The neighboring variables and their values are processed in
lexicographical order. The annotations of the leaves of the DT trees will be the
equivalence classes of neighborhood interchangeable values, see Algorithm 1.

In the following, we give formal definitions for the discrimination tree struc-
ture.

Definition 2.7 (Assignments) We define as assignments the variable/value combi-
nations in the branches of the Discrimination Tree. The set of compatible assign-
ments for a leaf of the DT is the set of assignments on the path from the root
node to the leaf.

Definition 2.8 (Annotations) Annotations of a leaf node are the variable/value
assignments for the critical variable or variables in the dependent set that are
consistent with all the compatible assignments of the leaf node.

For example, in Figure 2.2, we construct the DT for critical variable X5 of
the CSP in Figure 2.1. Values r and z reach the annotation of the same branch; it
means that they are compatible with the same assignments in the neighborhood
of X5 and thus, they are NI. In the right side of Figure 2.2, we construct the DT
for variable X3 and its values t and v from the problem in Figure 2.1. Here, the
branch assignments contain variable/values pairs of neighboring variables X0, X2

and X4 of the CSP where as values t and v end up in different branch annotations.
The Neighborhood Interchangeability (NI) algorithm is computable in poly-

nomial time and approximates FI. This algorithm localizes the search to the
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Algorithm 1: Discrimination Tree (DT )
Input : Xi

1: Create the root of the Discrimination Tree.
2: for value vi ∈ DXi do
3: for variable Xj ∈ Neighbors(Xi) do
4: for value vj ∈ DXj which is consistent with vi for Xi do do
5: if there is a child node corresponding to ’Xj = vj ’ then
6: Then move to it,
7: else
8: Construct such a node and move to it.
9: Add ’Xi, vi’ to annotation of the node (or root).

10: Go back to the root of the discrimination tree.

DT (X3) :DT (X5) :

X5 = { r, z}

root

X2= x

X2= y

X0 = tX0 = v

X4= y X4= y

X4= w

X3 = t X3 = v

root

X0 = x

X0 = y

X2= z

X4= w

X2= x

X2= y

X2= z

X0 = x

X0 = y

X0 = v

X0= t

X4= w

X4= y

X4= s X4= s

X5 =  w

X5 =  s

Figure 2.2: Discrimination Trees (DT ) for variables X5 and X3 of the CSP prob-
lem from Figure 2.1.

neighborhood of one CSP variable. NI is a sufficient but not a necessary condi-
tion for FI [41].

Neighborhood partial interchangeability (NPI) proposed by Choueiry and
oubir in [28] can approximate PI. The NPI algorithm is also a constructive
method based on a data structure called a Joint Discrimination Tree (JDT ).
NPI has as input a set S of variables and has to identify how variables in S
(when considered together and regardless of the constraints that apply among
them) interact through their neighborhood N(S) with the rest of the CSP . N(S)
are all the variables not in S but connected to at least one variable in S by a
constraint. JDT is constructed in a similar manner as DT where the branches
of the tree are parsed with all the values of variables in the input set S and the
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assignments in the branched contain variable/value pairs of neighbors of S. The
nodes of the JDT contain neighborhood variable/value pairs and the annota-
tions of each branch contain value combinations of variables of S, which represent
equivalence classes of interchangeability (neighborhood or partial). The tree is con-
structed starting from a root node and continuing with branches containing nodes
with neighborhood variable/value pairs. All the variable/value pairs of the set S
are considering the same JDT starting from the root node. These branches are
constructed either by creating nodes which contain neighborhood variable/values
pairs consistent with them or by moving to those nodes if they already exist, see
Algorithm 2.

Algorithm 2: Joint Discrimination Tree (JDT )
Input : S= {X1 ,X2, . . . , Xk}

1: Create the root of the Joint Discrimination Tree.
2: for variable Xi ∈ S do
3: for value vil ∈ DXi do
4: for variable variable Xj ∈ Neigh(S) do
5: for value value vjk ∈ DXj consistent with vil do
6: if there is a child node corresponding to ’Xj = vjk’ then
7: Then move to it,
8: else
9: Construct such a node and move to it.

10: Add ’Xi, vil’ to annotation of the node (or root).
11: Go back to the root of the discrimination tree.

Without loss of generality, variables and values are ordered in a canonical way
(lexicographic for example). The values of variables in S which arrive at the same
branch annotation of the tree have the same consistencies with the neighborhood.
Thus, they form a class of equivalence, where by interchanging these values the
neighborhood is not affected. These values determine neighborhood partial sets.

Complexity of DT and JDT Algorithms

As in [41], the complexity bound of the DT algorithm can be found by assigning a
worst case bound to each repeated loop. In the worst case the constraint network
is complete. So, for n variables with maximum domain size d, we have the bound
O(n · d · (n − 1) · d) = O(n2 · d2).

As shown in [28], the complexity for computing the JDT for a set of variables
S of size s, the time complexity of the JDT algorithm is O(s(n− s) · d2), where n
is the size of the CSP 2 and d is the maximum domain size of variables. Moreover,
the space complexity is O((n − s) · d).

2In the worse case the neighborhood of S is the whole rest of the CSP , thus n − s.
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Some important results

Benson and Freuder in [5], and Choueiry et al. in [25] found that there is high
occurrence of neighborhood interchangeability in sparse CSP , where CSP density
is smaller than 0.4. An accurate study of evaluation of NI sets has been completed
by Choueiry, Faltings and Weigel in [25]. This study measured the occurrence of
NI sets depending on the configuration of the CSP and found that:

• Only problems with low density allow NI values; the number of NI values
become near to 0 for a density higher than 0.4 (this is in agreement with
Benson and Freuder’s results in [5]).

• For problems with low density the number of NI values increases with the
domains sizes.

• In general, the number of NI values decreases with the size of the problem.

2.4 Our Contributions to the Related Work

In Figure 2.3, we present our contribution relative to the related work.

FI

KI

NSUB

CDI

aprox -CDI

NI

SUB

PI

NTI NPI NIc

set inclusion

intrechangeability type

local

weak

related work

contributions

substitutability

partial

subproblem

minimal/minimum NPI

Figure 2.3: Situating our contributions on standard CSPs with respect to previ-
ously known interchangeability relations. Lattice extended from [28].

The lattice in the Figure 2.3 was initially designed by Choueiry and Noubir
in [28] and describes relations among different interchangeability types. The nodes
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represent various interchangeability forms and the directed edges indicate a set
inclusion relation between these sets.

SoftNI

SoftFI

SoftNSUB

SoftSUB

FuzzyNSUB

SoftPI

SoftNPI

local

weak

α SoftNI

δ SoftNI

α SoftFIδ SoftFI

α SoftNPI

α SoftNPI

δ SoftNPI

δ SoftNPI

set inclusion
interchangeability type

related work
contributions

Figure 2.4: Contributions in Soft CSPs.

As we can see in Figure 2.3, our main contribution is the definition of a new
type of interchangeability called neighborhood tuple interchangeability (NTI).

NTI is a form of partial interchangeability that approximates partial inter-
changeability (PI) in CSPs.

Based on NPI we give algorithms for finding minimal dependent sets for a
given interchange. These dependent sets allow for finding partial interchangeable
values.

In Figure 2.4, we present a similar lattice for different forms of interchange-
ability and their relations in the Soft CSP framework. We have extended almost
all the forms of interchangeability from crisp CSPs to the Soft CSPs framework.

Moreover, as Soft CSPs is a more flexible framework than standard CSP ,
it allows for more relaxed forms of interchangeability. We define two novel inter-
changeability forms which we call α–interchangeability and δ–interchangeability,
see Figure 2.4.

Definitions for values substitution in Fuzzy CSPs were given in [31]. As
Fuzzy CSP is an instance of Soft CSPs, we consider definitions of Soft CSP
substitutability more general, see Figure 2.4.
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2.5 Partial Interchangeability – Minimal/Minimum
Dependent Sets

In this section, we study partial interchangeability in crisp CSPs. When a change
is produced in one of the CSP variables, some other variables might need to change
in order to retain the solution. We call the sets to which the change is localized
dependent sets and characterize through them the partial interchangeability. We
give algorithms for computing dependent sets to which the change is localized. We
present novel algorithms for generating minimal and globally minimum dependent
sets for a desired interchangeability.

2.5.1 Minimal Dependent Set Algorithm (MDS)

In the following, we present an algorithm for computing a minimal dependent set
for a given interchangeability.

The main idea of the algorithm is to construct the DT/JDT for dependent
sets of increasing size, starting with only the variable to be changed which we call
the critical variable. The dependent set is enlarged incrementally by including in
the set variables that make a difference between critical branch and significant
branches. We consider as critical branch the one which contains in its annotation
values from interchange set of the critical variable, where as significant branches
contain in their annotations values of other variables from the dependent set vari-
ables.

So, the basic method is as follows:

1. Start by constructing the Discrimination Tree (DT ) of the critical variable
Xi and its values to interchange, I = {v1, v2}.

2. If the values v1 and v2 are not in the annotation of the same branch, we
reconstruct the JDT of the set formed by the starting variable Xi and the
variables found to make the difference between the
branches which contain values v1 and v2 in their annotation. 3 Thus, Si =
Xi ∪ DifferenceV ars. We call the annotation containing the values v1 and
v2 the critical annotation, and its branch critical branch.

3. Check if the actual JDT contains values in the critical annotation for each
variable from S for which the JDT was constructed.

4. If this is not the case, we try further to reconstruct the JDT for a new set
Sj which includes the former Si and the variables which make the difference
between the critical branch and a selected branch containing in its annotation
values for variables missing in the critical annotation.

3Note that in the next JDT the values v1 and v2 of variable Xi will join the same annotation
as we eliminate from the neighboring those variables which make the difference between their
branches in the DT tree.
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We have the following heuristic for choosing between branches: the algo-
rithm selects the branch with the smallest difference in assignments relatively
to the critical branch and containing in its annotation the highest number of
values for variables missing in the critical annotation.

5. The operation is reiterated until the critical annotation contains values for all
variables of the current S. These values of the critical annotation represents
the minimal dependent set (MDS) and the algorithm returns it.

Simply put, the basic principle is the following: whenever two values are not
values, we see where the branches assignments differ in terms of variables. Those
variables should be included in the set S (and thus take out of the tree) and
the iteration restarts by the construction of the JDT of the new set S, until the
critical annotation contains all the values to interchange of the critical variable
and at least one value for each variable of the dependent set.

The algorithm can be extended in a straightforward manner for an input
set of critical variables with their corresponding interchangeable sets in order to
identify one MDS set. The generalization is obtained by starting the algorithm
from step 2.

In the algorithm, the idea remains the same: we try to bring in the annotation
of the critical branch all the variables from the input with the corresponding
interchangeable sets by including in the set the variables which make the difference
between the branches.

The output of MDS algorithm is a MDS set which contains the set of
CSP variables to which the change is localizes and their corresponding domain
partitions which characterize the PI values.

Minimal Dependent Set (MDS) set characteristics

A generic MDS set is characterized by a set S = {Xi, Xj , Xk} of CSP variables,
and the corresponding PI values PI(S) = {(Xi, {vi1, vi2}), (Xj , {vj1, vj2, . . . }),
(Xk, { vk1, vk2,. . . })}

The MDS set characteristics are as follows:

1. MDS contains the critical variable Xi and its values to be interchanged from
the set I.

2. The MDS set is obtained by applying iteratively the JDT algorithm on
an gradually increasing set S until each variables in S reach the critical
annotation, where the critical variable contains the values to interchange.

3. The branch, which has MDS in its annotation, contains all the neighbor
variables with at least one value; otherwise this MDS set is not of interest
as it means that there is no solution for the CSP .

4. The variables in a MDS set have to be a connected graph. We explain this
MDS as follows: Suppose variable Xk ∈ S has no constraints with any of
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the other two variables. As there are no constraints that means that all the
values of Xi and Xj are compatible with all the values of Xk. That means
that there exists NPI values for the set S’={Xi, Xj} ∈ S. That proves that
S is not a MDS set for the values vi1, vi2 of the variable Xi.

The MDS algorithm has as input the critical variable Xi and the interchange-
able set I = {v1, v2} which contains the values to interchange, see Algorithm 3.

Algorithm 3: Algorithm for Searching a Minimal Dependent Set (MDS),
Input: {{Xi}, I = {v1, v2}}

1: S ← {Xi}.
2: Construct the DT (Xi) for values in I.
3: if DT Branches contain all the neighbors of Xi then
4: if v1 and v2 in different annotations then
5: S ← insert variables which make the differences between the

branches having in their annotations v1 and v2.
6: MDS ← Algorithm4: Heuristic1(S, Xi, I).
7: else
8: MDS ← {Xi} /* values v1, v2 are NI */.
9: else

10: MDS is null.
11: return MDS set for variable Xi and values in I.

Algorithm 3 tests first if values in the interchangeable set I are NI 4. If not,
it continues to further search for the set S formed by the critical variable and the
variables which are making the difference between the DT (Xi) branches.

Algorithm 3 also checks if all the neighbors of the critical variable occur in
the branches of the values to interchange in the set I. We call here critical branches
the DT branches containing in their annotations values of the interchangeable set
I. This is important as:

Lemma 2.1
If critical branches of the DT of the critical variable Xi do not contain all the
variables in the neighborhood of the critical variable Xi than there is no guarantee
for valid solutions in which to exchange values of the interchangeable set I.

Proof. If a neighbor variable Xnj of the critical variable Xi is missing from one
of the critical branches, then the value to interchange vj ∈ I contained in the
annotation of this branch do not have any consistency with the neighbor missing
in the branch. So, this value does not appear in any solution and it is therefore
not worth continuing search for the minimal set for it. �

4In the first step we construct a DT as in the input we have initially only one variable.
We show further that the Algorithm 3 is extendable in a straightforward manner for an input
containing a set of variables and their corresponding interchangeable sets.
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Theorem 2.1
A critical branch of a JDT (S) contains values for all the variables in the neigh-
borhood of S.

Proof. According to Lemma 2.1, the search for MDS set proceeds by Algorithm 3
and is continued only when all the variables in the neighborhood of the critical
variable have consistencies with values in set I. And as for all the other neighbors
of the set S, the critical variable has universal constraints 5, the critical branch
contains values for all the variables in the neighborhood of S. �

After checking that the critical branches contain at all variables in the neigh-
borhood and that the values to interchange are not in the same annotation, Al-
gorithm 3 proceeds to step 5 and computes the differences between the critical
branches in order to obtain the variables that make difference for the values to
interchange. The comparison between the critical branches is simply a vectors
comparison, whose elements consist in vectors of values for each variable in the
neighborhood.

In step 6 of Algorithm 3, further search for an MDS set can be continued
by heuristic search, see Algorithm 4 or Algorithm 5. We propose two heuristic
search procedures: one proceeds to search on the branch with minimal difference
in assignments relative to the critical branch and the second proceeds to search by
backtracking to other branches alternatives when a MDS set is not found during
previous searches.

Algorithm 4 searches through the JDT (S) in the following way: When vari-
ables from S are missing in the critical annotation, A, it chooses one branch among
those having minimum differences relative to the critical branch and containing in
its annotation variable Xk missing in A 6. The search is continued iteratively in
the same way until we obtain a critical annotation that contains all the variables
from the set S.

Algorithm 4 is sound as it guarantees to return an MDS set satisfying all
the characteristics, in Section 2.5.1, and is complete in the sense that it returns
one of the MDS sets.

Algorithm 5 proceeds with a more exhaustive search than Algorithm 4 in the
sense that it is backtracking on other minimum difference branches alternatives
when an MDS is not found for the current branch 7. By backtracking on other
branches with minimum difference to the critical branch at one level, we might
find a smaller MDS than in the case where we continue to search on only one
alternative. So, we can use Heuristic2 as described in Algorithm 5 instead of
Algorithm 4. Also, when an MDS is not found in any of the alternatives at

5A universal constraint is when values of one variable are compatible with the entire domain
of another, as in Choueiry and Noubir [28].

6Variable Xk is chosen in the lexicographical order among those missing from the critical
annotation A

7MDS is not found when not all the variables from the set S for which the JDT was con-
structed do not reach the critical annotation.
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Algorithm 4: Heuristic1 (with heuristic search for choosing minimum dif-
ference branch)
Input: {{S}, {Xi}, I = {v1, v2}}

1: repeat
2: Construct JDT (S).
3: A ← variables in critical annotation.
4: MissingV ariables ← S \ A.
5: if MissingV ariables empty then
6: return S.
7: Xk ← first variable in MissingV ariables in lexicographical order.
8: Bk ← one of the branches containing Xk in its annotation and has

minimum difference to the critical branch.
9: S ← S+ variables which make difference between Bk and the critical

branch.
10: until MissingV ariables is empty.

one level, the search for an MDS set is continued further for the alternative
that contains the maximum number of variables from the set S in the critical
annotation.

Algorithm 5: Heuristic2 (with heuristic search for choosing minimum dif-
ference branches and backtracking on these alternatives)
Input: {{S}, {Xi}, I = {v1, v2}}

1: Construct JDT (S).
2: A ← variables in critical annotation.
3: MissingV ariables ← S \ A.
4: if MissingV ariables empty then
5: return S.
6: Xk ← first variable from MissingV ariables in lexicographical order.
7: MinimumBranches ← all JDT branches with minimum variables

difference to critical branch.
8: repeat
9: S ← S+ variables making difference between critical branch and

branch Bk take in their found order from MinimumBranches.
10: MDS ← Algorithm 5 : Procedure Search–MDS(S,Xi, I).
11: until MDS not null or Bk last branch for the set MinimumBranches.
12: if MDS not found then
13: S ← the annotation A found in previous JDTs which contains

maximum number of variables from S.
14: MDS ← Procedure Search–MDS(S).
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For a complete algorithm one should search all the alternative branches and
not only the ones with minimum distance to the critical branch. Also the search
should be continued not only for the annotation with maximum variables from the
input set S. But this algorithm tends to be too complex and thus, less efficient.

As shown in our experimental evaluation discussed below, we get a good
occurrence of an MDS set with heuristic based search.

Complexity of MDS Algorithm

The computation of the minimal dependent set based on Algorithm 3 for an input
of one critical variable Xi and an interchange begins with the computation of the
discrimination tree for the two values to interchange which has a time complexity
O(n · d), where n represents the number of variables in the CSP 8, and d is
the maximum domain size. 9 The time complexity for determining the differences
between the branches is O((n − 1) · d · log((n − 1) · d)), thus O(n · d · log(n · d)).
The space complexity for storing the tree is O(n · d).

If the values are not NI, the search continues as in Algorithm 3, step 6
with Algorithm 4 for the set S containing the critical variable and the variables
which make differences between the branches. The construction of the JDT for
S, has time complexity O(s · (n − s) · d2), where s represents the size of the
set S, n the size of the CSP and d the maximal domain size, see Choueiry and
Noubir [28]. If the set found by this JDT computation is not a minimal dependent
set, the search continues with selecting the branch containing values for the missing
variable in MDS. The complexity for choosing a branch and comparing with the
critical one is O(d ·O(Compare−Branches)), where O(Compare−Branches) =
O((n−s−1) ·d ·log((n−s−1) ·d)). The highest time complexity grow is though for
computing the JDT of the set S. The overall complexity is therefore O(s·(n−s)·d2)
and thus the time complexity bound stays O(n2 · d2) as in JDT construction.

The space complexity is bounded by the space complexity for constructing
the JDT which is O((n − s) · d2).

When the search is done based on Heuristic2 as in Algorithm 5, the time
complexity increases to O(n2 · d3). Also, the space complexity increases to O((n−
s) · d2) as we have to store all the JDT structures computed for all alternative
branches having minimum distance to the critical branch.

We can show that:

Theorem 2.2: Multiple MDS.
For a given input set, there might exist more then one MDS set.

Proof. Suppose, we have a set S = {Xi, X1}, where Xi represents the critical
variable and let I be its set of values to be interchanged. We construct the JDT for

8In the worse case the critical variable Xi is connected to all the variables in the CSP .
9In the case that the input is a set of variables with their interchange sets the complexity

grows to O(s · (n− s) · d2), where s is the size of the input set S, n is the size of the CSP and d
is the maximum domain size.
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set S where any value of X1 does not reach the critical annotation. Suppose there
are two alternatives (branches) for continuing the search which have a minimum
difference to the critical branch: one for a variable X2 and the other for X3.
By proceeding further search for set S1 = {Xi, X1, X2} and S2 = {Xi, X1, X3}
respectively, we might find that the critical annotations of JDT (S1) and JDT (S2)
respectively, contain values for all variables in S1 and S2 respectively, and thus
MDS sets, with possible different domain partitions for variables in S1 or S2 for
all the variables except the critical one Xi. �

Theorem 2.3: Termination.
Algorithm 3 for computing MDS set terminates.

Proof. The algorithm grows the dependent set incrementally and reconstructs each
time its JDT . When the critical annotation contains an MDS set which satisfy all
the characteristics, see MDS set characteristics in Section 2.5.1, than it contains
an MDS set and the algorithm returns it.

In the worst case, all the CSP variables will be included in the dependent
set and the algorithm terminates 10. �

Theorem 2.4: Soundness.
Algorithm 3 is sound: if it returns an MDS set S, then the set S is a minimal
one.

Proof. In the Algorithm 3, we include in the dependent set S the variables making
the difference between the branches having in their annotations values to inter-
change from I.

In the JDT of the new constructed S, the values to interchange of the critical
variable will reach the same annotation, the critical one. The algorithm returns
the MDS set found in the critical annotation. Thus, the MDS set returned satisfy
the first characteristic of a MDS set, see MDS set characteristics in Section 2.5.1.

The algorithm returns only when the NPI set of the JDT (S) contains values
for all the variables in the dependent set S. This satisfies the second characteristic
in order to be a MDSset.

As proven in 2.5.1, the critical branch of a JDT (S) contains always values
for all the neighbor variables of S, so the third characteristic of a MDS set is
satisfied.

As in the Algorithm 3, the set S is enlarged incrementally based on neighbor-
hood relations, all the variables in the dependent set S are connected, fact which
satisfies the fourth characteristic of a MDS set.

We can conclude that the Algorithm 3 is sound. �
10This happens in the case when the CSP is connected; otherwise, the algorithm worst case

terminates when all the variables connected to the critical variable are included in the dependent
set
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Theorem 2.5: Completeness.
MDS algorithm is complete in finding one of the MDS sets.

Proof. Algorithm 3 is complete in the sense that it will always return one of the
minimal dependent sets. In the worst case the dependent set might spread to the
entire CSP . As proven in Theorem 2.3 the algorithm terminates and returns an
MDS set which is sound according to Theorem 2.4. �

Applying MDS – An Example

In the following, we show how NI and MDS algorithms can be applied for solution
adaptation on a simple example.

The example in Figure 2.5 represents a CSP where the constraints are binary
and denotes mutual exclusion with respect to the values.

It is inspired from Choueiry and Noubir [28].

a, b, d

d

a, b, c

c, d, e, f

X3X1

X2 X4

Figure 2.5: CSP example with mutual constraints.

A change on one variable may necessitate changes in other variables in or-
der to stay solution. We apply the MDS algorithm described before in order to
calculate minimal set of variables to which the change is localized.

By applying the MDS algorithm on the simple example in the Figure 2.5,
we obtain the following results:

From X1 MDS: X1 = {a, b} From X2 –
found: X3 = {a, b} found:

From X3 MDS: X1 = {a, b} From X4 NI: X4 = {e, f}
found: X3 = {a, b} found: MDS: X3 = {c}

MDS: X3 = {c} X4 = {c, e, f}
X4 = {c, e, f} MDS: X4 = {c, d, e, f}

MDS: X3 = {a, c} X1 = {a, b}
X1 = {a, b} X3 = {a, b, c}
X4 = {c, d, e, f}
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NI appears in very sparse CSPs with density less then 0.4. In the following
we study how the occurrence of the MDS sets depends on the CSP problem
structure.

Experimental results

The performance of the algorithm for finding MDS sets depends on the structure
of the CSP problem.

In the following, we present the results we obtained on empirical tests for
studying this dependence.

Experimental Model

The following results are from tests analyzing the number and spread (size) of
MDS sets detected w.r.t. varying CSP configuration (structure). The CSP pa-
rameters we consider in our experiments are:

1. size of the problem: the number of variables.

2. the domain sizes of the variables.

3. the density of the problem: the ratio of the number of constraints relatively
to the minimum and maximum number of constraints allowed in the given
CSP , measured on a scale of 0.0 – 1.0.

During these experiments we considered graph coloring problems randomly
generated. As their constraints are mutual exclusive, the tightness of the con-
straints, which represents the fraction of the combinatorially possible pairs that
are allowed by the constraint between two variables, is not taken into considera-
tion.

Following the model of measuring the NI set as in [25], we report the results
only for problem sizes n = 10 and n = 20, while varying the density (dens–csp) in
{0.1, 0.2, . . . , 1} of the CSP and the maximum domain size dom–size = { n

10 ,2n
10 ,

. . . ,9n
10 ,n}. For each case, we generate random problems and then graphically rep-

resented by considering the measures described below.
Let us consider the CSP problem G = (V , E) as a constraint graph where

V represents the vertices (variables) and E edges (constraints), and

• nMDS(Xi) – represents the number of value pairs of variable Xi ∈ V for
which there is an MDS.

• avMDS(Xi) =
�nMDS

k=1 size(k)

nMDS is the average size of an MDS set for variable
Xi ∈ V , where size(k) represents the number of variables in the current MDS
set, where by the size of an MDS set we understand the number of variables
in the MDS set.

• ‖V ‖ is the number of variables that has at least one pair of values that spread
in a MDS set over their entire domain (all possible pair values).



2.5. Partial Interchangeability – Minimal/Minimum Dependent Sets 31

In our test evaluation we compute the density of the problem as: dens–csp =
e−e min

e max−e min , where e represents the number of edges in the current CSP , e min

= n − 1 and e max = n(n−1)
2 , where n is the size of the problem CSP .

Results

We now introduce the three criteria we used to measure the existence and spread
of MDS sets in the CSP .

Spread: of the MDS sets. m1 measures the ‘spread’ of the minimal dependent
sets (MDS sets) in the sense that we computed the average size of the MDS set
in a given CSP :

m1 =
∑‖V ‖

k=1 avMDS(V k)
‖V ‖

We have the graphical representation of m1 measure in Figure 2.6 for prob-
lems of size 10 and in Figure 2.7 for problems of size 20. We can see that for
problems with low density the spread tends to 0. As expected this means that in
low density problems exchanging the values of one variable does not propagate
too much in the CSP (corresponds to NI). This indicates that NI adaptation
could be successfully applied here. When the density of the CSP increases, the
size, spread, of MDS sets, tends to increase as well. Moreover, spread increases
with the number of resources. The two metrics applied to measuring the number
of MDS occurrences, as defined in [25], are as follows:

Occurrence 1: existence of the MDS sets. m2 measures the ‘occurrence’ of
MDS sets in a given CSP in the sense that it computes how many variables
generate MDS sets in association with the size of the problem.

m2 =
‖V ‖
n

Looking at Figures 2.8 and 2.9 we have the proof that MDS occurs often in
any CSP configuration and increases with the density of the CSP as well as with
the number of resources.

Occurrence 2: existence of the MDS sets. m3 measures the ‘occurrence’ of
MDS sets in the sense that it computes the average number of MDS sets per
variable.

m3 =
∑‖V ‖

k=1 nMDS(Xk)
n

The average number of MDS sets per variable depends in the same way as
Occurrence 1 on the configuration of the CSP , but it is a better indicator w.r.t
the density of the problem and highly dependent on the number of resources, see
Figure 2.10 and Figure 2.11.
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Figure 2.6: Spread of MDS sets for ran-
dom generated CSPs with size 10.

Figure 2.7: Spread of MDS sets for ran-
dom generated CSP with size 20.

0

20

40

60

80

100

0

2

4

6

8

10
0

0.2

0.4

0.6

0.8

1

dens−csp 
dom−size 

m2 

0

10

20

30

40

50

60

0
2

4
6

8
10

12
0

0.2

0.4

0.6

0.8

1

dens−csp dom−size 

m2 

Figure 2.8: Occurrence of MDS sets
per variable in random CSPs with size
10.

Figure 2.9: Occurrence of MDS sets
per variable in random CSPs with size
20.
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Figure 2.10: Average number of MDS
sets per variable in random CSPs with
size 10.

Figure 2.11: Average number of MDS
sets per variable in random CSPs with
size 20.
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From the results we can conclude that on higher density problems the occur-
rence of PI characterized through MDS sets, increases and thus, the range of the
adaptation increases as well with it, but in the same time the spread is enlarged
over the variables of the CSP . When the spread enlarges, the effect of a change
propagates further. Thus at a certain point, searching the MDS sets should be
stopped. When the MDS set becomes too large, it might not bring any additional
profit, as it would be equivalent to or even more costly than solving the problem
from scratch.

Some conclusions

Until now, interchangeability has mostly been applied as a technique for enhancing
search and backtracking, see [43] and [48]. It had not been effectively exploited as
a technique for updating solutions. In this work we have studied how interchange-
ability can be applied for updating solutions with the goal of using it further in
solution adaptation. The work makes the following main contributions:

• A complete algorithm for detecting MDS sets which can be used to provide
more flexible adaptation than an NI only based approach would.

• An evaluation of how far changes propagate in solutions to be adapted ac-
cording to problem structure (investigating impact of density and size of the
problem), indicating:

– Strong dependency on the density parameter of the CSP where MDS
are more frequent in CSPs with high density.

– Weak dependency on the domain sizes where MDS increases also with
the number of resources.

2.5.2 Minimum Dependent Set Algorithm (mDS)

We study now algorithms for computing minimum dependent sets of interchange-
able values in CSPs.

In general, changes to an existing solution are hard to implement, so it is
required to find the minimum dependent set among the minimal ones.

Description of the algorithm

We show in the following how to compute the minimum set of variables and their
corresponding values to which the change is localized when interchanging a values
pair of a CSP variable. We called this set the minimum dependent set (mDS).

There are many ways in which an interchange of pair of values for one variable
can propagate through a CSP , thus there are many minimal dependent sets but
fewer minimum ones.

In the Section 2.5.1, we described an algorithm for computing a minimal
dependent set. The search is based on the JDT structure and for computing the
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MDS sets we use heuristics for choosing further search alternative branch which
contains in its annotation variables/values we need to include in the dependent
set. This heuristic approach helps for reducing the algorithm complexity.

Computing the minimum set among all the minimal ones requires optimality
as we have to compute all the possible minimal and then choose the minimum
among all of them. This optimality condition increases the algorithm complexity.
We attempt to reduce the complexity by considering as search limit the neighbor-
ing degrees of variables to the critical variable, called K–distance.

The algorithm for finding the mDS set for a given interchangeable set of a
CSP variable Xi proceeds in the same way as the MDS algorithm except that
when a variable is missing from the critical annotation we have to consider further
search for all branches containing the missing variable in the annotation. Further
the search continues in a branch and bound way in the sense that we do not
continue the search for MDS sets containing more variables then the minimum
one found so far.

In the following we give the main steps of the mDS algorithm. In the first 3
steps, the algorithm is similar to the MDS one.

1. Start by constructing the DT for the variable Xi and its values in the inter-
change set I = {v1, v2}.

2. If the values v1 and v2 are not in the annotation of the same branch, recon-
struct the JDT of a set formed by the variable Xi and the variables found
to make a difference in the branches for the values to interchange.

3. If the actual JDT contains in its critical annotation a minimal dependent
set then this is the minimum one and the search is stopped.

4. If this is not the case, we proceed further search for sets candidates by com-
paring the critical branch with all the branches containing in their annota-
tions values of the first variable Vk which is missing from the critical anno-
tation. The new candidate sets are obtained by adding the variables making
the difference between the critical branch and the chosen branch to the set
for which the current JDT was constructed. For each candidate set, the cor-
responding JDT is constructed and thus, either some new MDS sets are
found or the search continues with new candidate sets.

5. During the computation the minimum MDS set found is memorized and the
search is not continued for candidate set alternatives that are larger than the
last minimum found. We consider all the alternatives for further search, thus
the algorithm is optimal.

6. The algorithm terminates either when a neighboring K–distance from the
critical variable Xi is reached (no sense to search further, the dependent set
would be too big) or when we have a MDS set MDSi which is the minimum
among all the MDS found by now and all the other further search sets
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candidates are larger then the set which gave MDSi. Then MDSi is the
minimum dependent set mDS.

The mDS algorithm is given below, see Algorithm 6:

Algorithm 6: Algorithm for Searching a Minimum Dependent Set (mDS)
in a K–distance neighboring,
(Input: Xi, I = {v0, v1})

1: S ← {Xi}.
2: Construct the DT(Xi) for values in I.
3: if v1 and v2 in different annotations then
4: S ← insert variables which make the differences between the

branches having in their annotations v1 and v2.
5: CandidateSets ← {S}
6: repeat
7: for Each S′ ∈ CandidateSets do
8: Construct JDT (S′).
9: CandidatesmDS ← insert critical annotation of JDT (S′)

10: MainCandidate ← the minimum size CandidatemDS among all
the CandidatesmDS .

11: for Each CandidatemDS ∈ CandidatesmDS with size smaller then
MainCandidate (if there is no MainCandidate yet continue with
all the candidates). do

12: Continue search though all the branches containing in their
annotations the first variable Vk in the lexicographical order
which is missing from the CandidatemDS .

13: Compute new candidate sets, where the candidate sets are
computed by adding the variables making difference between the
critical branch and the chosen branch to the candidate set for
which the current JDT was constructed.

14: CandidateSets ← insert the new candidate set which are
smaller then MainCandidate.

15: until K–distance is reached or CandidateSets == 0
16: else
17: mDS ← {Xi} (the values v1, v2 are NI).
18: return mDS for variable Xi and values in I.

The minimum dependent set algorithm can be also extended in a straight-
forward manner. In the same way as MDS algorithm, for an input containing a
set of critical variables with their corresponding interchange values sets. 11 The
idea remains the same: we try to bring in the annotation of the same branch all

11The generalization to a set critical variables is straightforward and obtained by starting the
algorithm from step 2.
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Figure 2.12: CSP example. We want to calculate minimum dependent set (mDS)
for variable X1 and the interchange set I = {6, 4}.

the variables from the input with the corresponding value–pairs by including the
set the variables which make the difference between the branches.

In the following we give an example of applying the minimum dependent set
algorithm on the CSP problem in Figure 2.12, left side. For example, we consider
the critical variable X1 and the interchange set I = {6, 4}. The DT of X1 is
constructed for the values in the interchange I. These values do not reach the
same branch annotation. Thus, the values in I are not NI and by interchanging
them the change will spread to other variables. We proceed further search in order
to find the minimum set of variables to which the change spreads. As variable X3

is making the difference between the branches we form the set S1 = {X1, X3} and
reconstruct the JDT for it, see Figure 2.12, the right side.

The JDT for set S1 finds in the critical annotation 12 only values for variable
X1, but any value for the variable X3. If the mDS algorithm searches for a 1–
distance mDS set, the algorithm stops here without finding any mDS set. For
any K higher then 1 the algorithm continues in the following way:

The search is continued by considering all the branches having in their anno-
tations values for X3 which is the missing variable in the critical annotation, see
Figure 2.12. The search is continued, first for branches which have minimum num-
ber of variables relative to the critical branch. So, in our example for the branch
with annotation X3 = {4, 2}, the difference to the critical branch is variable X6,
and for the branch with the annotation X3 = {5}, the difference to the critical

12We remind that the critical annotation is the one which contains the critical variable X1

and the values to interchange from set I.
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Figure 2.13: The minimum dependent set (mDS) and the minimal dependent set
(MDS) for variable X1 and the interchange set I = {6, 4} in Figure 2.12.

branch is variable X7. For the other two branches the difference to the critical
branch is higher as they differ for variables X4 and X7 as well.

By constructing the JDT for set S2 = {X1, X3, X6} we find an mDS set
with domain partitions as in Figure 2.13, left side.

The JDT for set S3 = {X1, X3, X7}, is missing values for variable X7 in the
critical annotation and further searching must proceed by reiterating the operation
on branches as before. Anyway, as inserting at least one variable in set S3 gives a
bigger set size than S2, the mDS algorithm stops and returns the mDS found for
set S2.

In the MDS algorithm, we select the branch with minimum variables differ-
ence between branches as the heuristic. In the example of Figure 2.12, we find two
branches having a difference of only one variable as mentioned before: one which
differs by X6 and the other by X7. If the branch having the difference X7 is chosen
instead of the one with the difference X6, which leads to the minimum dependent
set, we continue the iteration for set S3 which does not contain an MDS set in
the critical node. Using the same heuristic, by constructing the JDT for set S3,
we find a branch which differs with only variable X4.

The JDT structure for set S4 = {X1, X3, X4, X7} finds an MDS set as in
the Figure 2.13, on the right.

So, the minimum dependent set for critical variable X1 and values to in-
terchange I = {6, 4} is as in the Figure 2.13, on the left : X1 = {6, 4, 8}, X3 =
{4, 2}, X6 = {2, 1}, at a 2–distance from the critical variable.
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Complexity of mDS Algorithm

The time complexity for the mDS algorithm is the same as for the MDS algorithm
for the first 3 steps, but increases for branch selection in step 4, as we consider
all alternatives with a minimum branch difference and not only one. This can be
computed as follows:

O(mDS = O(DT (CriticalV ariable, InterchangeSet))
+ O(JDT (CriticalV ariable + DifferenceV ariablesinDTbranches))
+ O(BranchesNumber · O(CompareBranches))

The time complexity of O(DT (CriticalV ariable, InterchangeSet)) is O(n ·
2 · d) = O(n · d), since it computes for only one variable and values in the in-
terchangeable set 13, where n is the number of variables in the CSP and d the
maximum domain size.

The time complexity of the JDT at first iteration is O(s · (n− s) · d2). Since
in the worst case we would obtain d alternatives, branches, the time complexity
grows to O(s · (n− s) · d3), where s is the size of the dependent set S, n is the size
of the CSP and d the domain size. As s grows to n, the time complexity becomes
O(n2 · d3).

The time complexity for choosing branches and comparing them remains as
in the MDS algorithm: O(d · O((n − s) · d · log((n − s) · d))).

Since the complexity for computing the JDTs is the highest, the overall time
complexity for the mDS algorithm is O(n2 · d3).

The space complexity is given by the space needed to store the JDT struc-
tures at each iteration. As we can compute one by one the JDT structures,
the space complexity remains as that needed for storing one JDT at a time:
O((n − s) · d).

To reduce complexity we imposed the K–distance parameter which limits
the search to a K neighboring distance from the critical variable. This method is
useful for sparse problems with a density smaller than 0.5, while for very dense
problems it is not effective. In very dense problems the complexity of mDS al-
gorithm might increase so much that it might be more effective to search only a
minimal dependent set based on branch heuristic search, as in Section 2.5.1.

We can show that:

Theorem 2.6
mDS algorithm terminates.
mDS algorithm is sound: if it returns a mDS set S, then the set S is a minimum
one.
mDS algorithm is complete: if there exists a mDS set it will find it.

13In the case that the interchangeable set reaches the domain size the time complexity grows
to O(n · d2)
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Proof. Termination:
Algorithm 6 searches in a branch and bound manner for the minimum de-

pendent set among the minimal ones. When a minimal dependent set S is found,
the alternatives which might increase the size of the dependent set more then
the size of S are dropped down. So, in the case where the algorithm finds MDS
sets, it selects the minimum one and drops all the search paths which increase
the dependent set more then the last minimum one found. When all the search
alternatives are reaching K–distance from the critical variable, Algorithm 6 stops
and returns the minimum dependent set. As in Algorithm 3, in the worst case, the
algorithm can continue until the entire CSP is covered if no MDS set is found
by then, or the K–distance is sufficiently large 14. When no MDS set is found up
to a K–distance, the Algorithm 6 stops and returns null.

Soundness:
Algorithm 6 is sound when we do not impose the K–distance condition. Algo-

rithm 6 computes the minimum dependent set among the minimal ones. Suppose
we find a 2–distance MDS2 set, which has a size k, and also an alternative branch
which has an incomplete annotation ANNOT , where not all variables from S
reach the annotation. As the size of ANNOT smaller then MDS2, for the 3–
distance search continues for this branch, suppose we find and MDS3 set with a
size smaller than MDS2, such that it becomes the minimum one. If the algorithm
stops at 2–distance, it would not in fact find the minimum one. To find the mDS,
one has to consider all alternatives.

Completeness:
Algorithm 6 is complete only when we do not impose the K–distance heuris-

tic. Without this condition, the algorithm searches until it finds a minimal depen-
dent set MDS, do not follow the search alternatives which would increase the size
of the dependent set more than MDS. In this way it selects the minimum among
all the MDS sets found. In the worse case the algorithm has to search all the
alternatives and the dependent set might spread to the entire CSP . �

Experimental results

The performance of the algorithm for finding minimum dependent sets depends
very much on the structure of the CSP problem. The following results are from
random tests and they analyze the existence, in number, and the size of minimum
dependent sets detected w.r.t. varying CSP configuration structure.

A constraint satisfaction problem can mainly be characterized by the follow-
ing 4 parameters:

• n – the number of variables,

• a – the maximum domain size,

14Note that in very dense problem K–distance limitation does not help to reduce the complex-
ity.
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• d – the constraint density of the CSP problem: the ratio of the number of con-
straints relatively to the minimum and maximum number of the constraints
allowed in the given CSP , measured on a scale 0.0 – 1.0,

• t – the tightness of the constraints: the fraction of the number of forbidden
tuples to the number of all possible tuples.

In our measurement we have considered only the first 3 parameters thus far.
We run the minimum dependent set algorithm on randomly generated CSPs. The
tests are restricted to binary CSPs.

In the following we describe the criteria we used to measure the existence
and size of minimum dependent

Size: The mDS–Size is the average size (the number of variables) of a mini-
mum dependent set (mDS).

mDS − Size =

∑‖VmDS‖
k=1

�mDSSets(Xk)
j=1 ‖Sj(Xk)‖

‖mDSSets(Xk)‖
‖VmDS‖ ,

where VmDS is the set of variables which have mDS sets obtained by interchanging
all the values from their domain, mDSSets(Xk) represents all mDS sets of variable
Xk.

It has been shown that the neighborhood interchangeability (NI) appears
for a density lower then 0.4, see [5], [25].

It has been proved that there is less neighborhood partial interchangeability
characterized by MDS sets for low density, but it occurs as the density increases,
see [69]. mDS sets are computed by counting NI and MDS sets occurrence.
For CSPs with low density mDS sets tend to be small and sometimes have an
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average of only one variable with its NI values where as for high density CSPs
mDS increases in size to more variables and their values to interchange values.

In Figure 2.14, we show how the average size of mDS varies depending on the
constraint density of the CSP for problems of size n = 10 and maximum domain
size a = 10. Each point on the graph was obtained by computing the average over
50 random generated problems. Our experiments prove that the size of mDS sets
increase with the constraint density and have manageable sizes.

Existence: The Existence measures the ‘existence’ of minimum dependent
sets (mDS) sets in the sense that it computes the average number of mDS sets
per variable.

mDS − Existence =
∑‖VmDS‖

k=1 ‖mDSSets(Xk)‖
n

,

where VmDS is the set of variables which have mDS sets obtained by interchanging
all the values from its domain, ‖mDSSets(Xk)‖ is the number of mDS sets of
variable Xk.

In Figure 2.15, we have the graphical representation of the mDS–Existence.
It can be observed that the existence of MDS sets increases with the CSP density.

Some conclusions

Our main contribution is the algorithm for searching minimum dependent sets by
localized search based on the interchangeability concept. The algorithm results can
be used to find close solutions by minimum changes to already known solutions.
This algorithm can provide the basic for classifying the CSP solutions method
and for constructing families of solutions.

By applying this algorithm to randomly generated problems, we have gained
an understanding of the existence and size of minimum dependent sets depending
on domain sizes and constraint density.

Briefly the main conclusions are:

• Strong dependency on the density parameter of the CSP where mDS sets
are more frequent in CSPs with high density.

• Weak dependency on the domains sizes where mDS size increases with the
number of resources.

The results show that mDS sets of manageable size exist for all vari-
ables/values and that they can be computed with a manageable amount of effort.
This makes partial interchangeability an interesting concept for practical applica-
tions.
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2.6 Partial Interchangeability – Tuple

Interchangeability

Today, algorithms for computing partial interchangeability, as neighborhood par-
tial interchangeability in [28] and those proposed in Section 2.5.1 and Section 2.5.2,
localize the change to a set S of CSP variables, but the consistencies among the
variables inside this set S are not guaranteed.

In the following, we propose algorithms that compute partial interchangeable
solutions, which we call interchangeable tuples. These tuples correspond to consis-
tent value assignments inside set S, which satisfy in the same way the neighboring
and thus, the rest of the CSP .

2.6.1 Introduction and Definitions

There are no known polynomial algorithms to compute partial interchangeabil-
ity, as in Definition 2.4. Computing the partial interchangeable sets amounts, in
general, to the enumeration of all solutions to the CSP , which is far too expensive.

As shown in the Section 2.5.1, a localized algorithm for computing partial
interchangeable sets was proposed by Choueiry and Noubir under the name neigh-
borhood partial interchangeability (NPI).

As we show further in this section NPI does not always implies PI. In
previous Section 2.5.1, we proposed algorithms to compute minimal/minimum set
of variables to which the change is spread for a given pair of values to interchange.
Again this algorithms are localizing the change to a set of CSP variables and
determine their value domain partitions which allow interchange of values inside
these partitions without affecting the neighborhood and thus, the rest of the CSP .
However, all these algorithms arrive to localize the change to a set of variables and
their domain partitions with no guarantee that there exist valid assignments for
variables inside these sets.

In the following, our purpose is to study algorithms that search for inter-
changeable consistent assignments, partial solutions of the CSP , which we called
tuple interchangeability. As the algorithms we propose are also based on localized
and neighborhood relations in the CSP , we call this method neighborhood tuple
interchangeability (NTI). These tuples are computed as consistent assignments to
the dependent set obtained by the spread of change for a certain interchange, i.e.
the interchange of a pair of values for a CSP variable 15.

So, we propose a new concept called neighborhood tuple interchangeability
(NTI) which can approximate PI properly. The scenario for the algorithm which
generates approximated PI sets follows two steps: (1) use NPI as a filter for the

15The algorithms we give, for minimal/minimum dependent set search and for tuple inter-
changeable search, can be straightforwardly extended for more extensive inputs as a set of vari-
able instead of only one and whose values to be interchanged over a domain partition instead
only a pair.
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computation of NTI sets , and (2) compute the NTI sets. As NTI implies PI,
as we prove further, we find PI sets.

Consider the example in Figure 2.1. By applying the algorithm proposed
by Choueiry and Noubir [28], we find that the values w and s for variable X5

are neighborhood partial interchangeable with respect to set S = {X2}. At the
same time, we can see that the values w and s of variable X5 also satisfy the
Definition 2.4 of partial interchangeability as for one solution where X5 = w
implies a solution with X5 = s and with possible changes for X4 in the case this
has assigned w or s. A problem associated with this algorithm is that it does not
indicate how to choose the set of variables S on which the algorithm is applied.

Partial interchangeability might be hard to compute without enumeration of
all solutions. There are partial interchangeable values which are hard to detect by
using neighborhood based algorithms. For example, the variable X3 of the CSP
in the Figure 2.1, has value t partially interchangeable with value v with respect
to the set S = {X2} because the variable X0 will never take value t in a consistent
solution as X1 always equals t. This form of partial interchangeability is hard to
compute in a localized manner and by now, there are no computable algorithms
to find these partial interchangeable values.

Moreover, NPI does not necessarily imply PI. For example, by computing
NPI values for critical variable X2, interchangeable set I = {x, r}, and dependent
set S = {X0}, we find the following NPI values sets: X2 = {x, r}, X0 = {x}. Thus,
NPI finds that values x and r for variable X2 are NPI but they do not fulfill
the partial interchangeability Definition 2.4. By interchanging value x for r for
variable X2 there is no solution in this case as variable X0 can take only value x,
not compatible for X2 = x.

We propose here an algorithm which approximates PI and guarantees that
the values found are PI.

As it appears in Definition 2.5, NPI localizes variables values without guar-
antee of consistency among the values inside the NPI set.

The definition we propose further describes consistent partial consistent tu-
ples/solutions which satisfy the neighborhood in the same way:

Definition 2.9 (Neighborhood Tuple Interchangeability – NTI) Values Xi = a and
Xi = b are tuple interchangeable (NTI) with respect to a set of variables S if for
every consistent tuple t of value assignments to S∪{Xi} that admits Xi = a there
is another consistent tuple t′ that admits Xi = b such that t and t′ are consistent
with the same value combinations for variables outside of S. Additionally, the
same condition must hold with a and b exchanged.

In this work, we propose an algorithm which computes neighborhood tuple
interchangeable (NTI) values and thus approximates PI. In the Figure 2.1, for
the critical variable X3 and interchangeable set I = {t, z, q} our NTI algorithm
finds as dependent set the set of variables S = {X2, X0} and all its consistent
tuples, as in Table 2.1.
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Theorem 2.7
(Extensivity: NTI =⇒ NPI) Consider a critical variable Xi. If values a and b are
NTI with dependent set S, then they are NPI with dependent set S.

Proof. By Definition 2.9, if values a and b of variable Xi are NTI with respect to
the dependent set S, for every consistent tuple ta of value assignments to S∪{Xi}
where Xi = a, there exists a consistent tuple tuple tb that admits Xi = b. ta
and tb are consistent with the neighborhood of S ∪ {Xi}. Then, if the set of
variables S is removed from the problem, values a and b are both consistent with
the neighborhood in the same way, thus NI with the problem. This makes them
NPI according to the Definition 2.5. �

Theorem 2.8
(Extensivity: NTI =⇒ PI) Consider a critical variable Xi. If values a and b are
NTI with dependent set S, then they are PI with dependent set S.

Proof. By Definition 2.9, if tuples ta and tb are NTI, they are compatible in
the same way with the neighborhood of the dependent set S. Thus, by replacing
ta with tb in a given solution, it will stay a solution. So, for a solution which
contains a there is another solution which contains b with changes only in set S.
By Definition 2.4, this means that values a and b in the interchangeable set I are
PI. �

Theorem 2.9
Let I be a partially interchangeable set for critical variable Xi with dependent set
S. Then I is also a neighborhood tuple interchangeable set for Xi with dependent
set S′ ⊇ S.

Proof. If I is PI then there is a set of solutions to the entire problem that contain
all values in I. These solutions make I NTI with respect to a set S′ which contains
all variables of the problem. �

Of course, in most cases, it will not be necessary to extend the dependent
set to the entire problem to obtain NTI. Theorem 2.9 is useful since it allows us
to prove that a set I is not PI whenever we can show that it cannot be NTI.

For example, in the problem from Figure 2.1 the set I = {t, v} is partially
interchangeable for the variable X3 with the dependent set S = {X0}. This hap-
pens because variable X0 would never take value t but this is not computationally
tractable. By using NTI, we can find that I is a neighborhood tuple interchangeable
set for X3 with dependent set S′ = {X0, X2}, where S′ ⊇ S.

2.6.2 Algorithm for Computing Neighborhood Tuple
Interchangeability (NTI)

Our main objective is to find equivalent tuples of values, partial CSP solutions,
which satisfy in the same way the rest of the problem relative to its neighborhood.
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According to this property, they can be interchanged in a given solution without
affecting the rest of the problem.

We therefore propose a more refined search algorithm than MDS algorithms,
see Section 2.5.1, which computes consistency inside the set of variables S to which
the change is localized the change and guides the search according to them as well.

The algorithm is based also on the discrimination tree structure defined by
Freuder [41] at some stages of search, and the Joint Discrimination Tree (JDT )
algorithm by Choueiry et al., [28]. See Section 2.2 for these algorithms.

Since we are interested in localizing the change in variables of the dependent
set S for the interchangeable set I of the critical variable, we limit our search to
a neighborhood of S, consistent with the values in the interchangeable set.

So, in the search for tuple interchangeability 16 we need to consider only a
part of the JDT , respectively only sub–branches of the branch which contains the
interchangeable set of the critical variable/dependent set in its leaf annotation.
We define this limited JDT as follows:

Definition 2.10 (Reduced JDT ) A reduced JDT is a JDT where we consider only
the assignments that are compatible with all values in the interchangeable set 17.
We call these assignments the Common Assignments.

According to the Definition 2.10, as in the branches of the reduced JDT we
consider only assignments of the neighborhood compatible with the interchange-
able set, the assignments for all the other variables of the dependent set can be
only subsets of the common assignments. This property is important in further
design of the NTI algorithm.

In Figure 2.16, we represent the discrimination tree for critical variable X3

of the problem given in the example from Figure 2.1 and its interchangeable set
I = {t, v}. In this example, the assignments of the branch which leads to X3 = {t}
are the following variable/value combinations: X0 = x,X0 = y,X0 = v,X2 =
x,X2 = y,X2 = z,X4 = y,X4 = w.

In this DT computation, we obtain two annotations, one contains value X3 =
v and the other X3 = t. As the values v and t do not end up in the same annotation
they are not NI and further search for their tuple interchangeability is necessary.

An example of the reduced JDT for variable X3, the interchangeable set
I = {t, v} and the set of variables S = {X0} is given in the left side of Figure 2.17.
As in this tree the variable X0 no longer discriminates the values v and t for
variable X3; these values now belong to the same annotation. They are compatible
with the assignments of their own branch and as all the other branches are subsets
of their branch, they are compatible with all the assignments in the reduced JDT .

16These tuples contain values from the interchangeable set I assigned to critical variable and
consistent values for the other dependent variables.

17In the construction of the reduced JDT for variables from the dependent set S which do not
have constraints with direct neighbors of critical variable, thus they are compatible with their
entire domain, constructs or move only on the assignments compatible with the values in the
interchangeable set.
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Input X3 = { t, v} 

DT (X3) :

X2= x

X2= y

X0 = tX0 = v

X4= y X4= y

X4= w

X3 = t X3 = v

root

X0 = x

X0 = y

X2= z

X4= w

X2= x

X2= y

X2= z

Figure 2.16: Discrimination Tree (DT ) of variable X3 from the problem Figure 2.1.

We now give a description of the algorithm and then present experimental
results of tuple interchangeability occurrence relative to the CSP structure.

Algorithm for Construction of Joint Tuple Tree (JTT )

In the following, we introduce a new structure which we call Joint Tuple Tree
(JTT ) used in our algorithm for the computation of interchangeable tuples. The
JTT is constructed from the annotations of the reduced JDT and the relations
between their corresponding assignments.

By the computation of a JDT for set of variables S, a critical variable Xi and
an interchangeable set I = {a, b} we obtain various annotations at the leaves of the
JDT . The annotations contain values of the variables from the set S compatible
with the assignments of the JDT branches.

We define the Joint Tuple Tree which contains the reduced JDT annotations
and their relations:

Definition 2.11 (Joint Tuple Tree (JTT )) A Joint Tuple Tree is a tree which con-
tains as nodes the leaves of the reduced JDT for a critical variable Xi and a
dependent set S. A node n is a child of a node n′ if the set of compatible assign-
ments of n is a subset of that of n′ and if there is no other n′′ such that n′′ would
be child of n and n′ child of n′′. We annotate the arc between n and n′ by the
variables involved in assignments that are consistent with n′ but not with n. 18

For example, for variable X3 and its interchangeable set I = {t, v} in Fig-
ure 2.16 we have to continue further search. We can see in Figure 2.16 that variable

18The JTT arc between its nodes represent subset relations between the node assignments of
the reduced JDT branches of the corresponding end nodes annotations.
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X0 is making the difference between branches having in their annotations the val-
ues of the interchangeable set. Thus, we further construct the reduced JDT of
critical variable X3, the interchangeable set I = {t, v} and the set of variables
S = {X0}, see Figure 2.17 on the left side. On the right side of the Figure 2.17,
we represented the JTT obtained from the annotations of the JDT (S).

JTT (S)

X3 = {t, v}
X0 = {v}

X0 = x

X3 = y

X3 = z

X0 = y

X0 = t

X2

X2

X4 

X2, X4 

X2, X4 

(X3=t, X0=v)

(X3=t, X0=v) 
(X3=t, X0=x) 
(X3=v, X0=x)

(X3=t, X0=v) 
(X3=t, X0=y) 
(X3=v, X0=y)

(X3=t, X0=v) 
(X3=v, X0=t) 

(X3=t, X0=v) 
(X3=t, X0=y) 
(X3=v, X0=y) 
(X3=y, X0=v)

(X3=t, X0=v) 
(X3=z, X0=v) 

 X3 - critical variable, I = {t, v}, S = { X0} 
JDT (S) :

X3 = {t, v}
X0 = {v}

X0 = x
X0 = y X3 = yX3 = z

root

X2= z

X4= y

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X2= y

X2= x

X2= y

X2= z

X4= y

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X2= q
X2= q

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X2= z

X2= q

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X2= y

X2= z

X2= q

X4= w

X4= s

X5 = w

X5 = r

X5 = s

X5 = z

X0 = t

- admissible tuples

X1= t

X4= y
X4= y

X4= y

X2= x

X2= q

Figure 2.17: Joint Discrimination Tree (JDT ) for the critical variable X3, inter-
changeable set I = {t, v} and dependent set S = {X0} (left side). Joint Tuple Tree
(JTT ) for the critical variable X3, interchangeable set I = {t, v} and dependent
set S = {X0} (right side).

The root node of the JTT contains the critical annotation of the JDT which
holds the critical variable X3 and the interchangeable set I = {t, v}.

All the other JDT annotations have branch assignments that are subsets of
the root node branch assignment, and thus they become children of the root node.
As the annotation X3 = y has the assignments a subset of the annotation X0, it
becomes its child.

In the following we propose an algorithm for constructing the JTT from a
reduced JDT . As in Figure 2.17, we consider as root node the leaf of the JDT
which contains in its annotation the interchangeable set I of source variable Xi.
Further, we adjust the other leaves of the JDT as nodes in the JTT . As in De-
finition 2.11, a node n is child node of n′ when node n contains a subset of its
assignments.

Algorithm 7 constructs the tree of dependencies between JDT leaves which
are its nodes. It labels the arc between nodes with variables involved in assignments
that are consistent with the parent node but not with the child. It labels each node
with consistent tuples of dependent set S for which the JDT and respectively JTT
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Algorithm 7: Joint Tuple Tree (JTT ):
1: T ← root node, r = leaf node with interchangeable set in reduced JDT .
2: l ← remaining leaf nodes of the reduced JDT .
3: repeat
4: n ← node in l such that no other node n′ is compatible with all

assignments on the path to n.
5: p ← deepest node in T that is compatible with all the assignments

on the path to n.
6: make n a child node of p; remove n from l.
7: annotate the arc between p and n with the variable involved in

assignments consistent with the annotation of p but not consistent
with the annotation of n.

8: until l is empty

were constructed.
We define the consistent tuples which label the JTT nodes as follows:

Definition 2.12 (Admissible Tuples) The admissible tuples at a node n of the Joint
Tuple Tree (JTT ) are all combinations of the variable values associated with any
node on the path from the root to n that are consistent with all constraints 19.

Informally, the admissible tuples are all the consistent tuples using assign-
ments in the annotations of the node and its ancestors.

Our interest is to find a node which has admissible tuples containing at least
one tuple for each value from the interchangeable set of the critical variable. We
define this node as follows:

Definition 2.13 (Compatibility) We call the subtree of the joint tuple tree (JTT )
rooted at node n compatible if:

• for each value in the interchangeable set, the JTT admissible tuples at node
n contain at least one tuple where the critical variable takes that value or

• the admissible tuples at node n contain no tuple where the critical variable
takes a value in the interchangeable set, and all subtrees rooted at children
of node n are compatible.

Lemma 2.2
A consistent tuple t which is consistent with the neighborhood will be admissible
at some node of the JTT .

19Each JTT is constructed from a JDT of a candidate minimal dependent set S. The variables
in nodes are variables of this set S; and in tuple consistency computation associated to JTT
nodes, we consider the constraints associated to variables in set S.
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Proof. The root node contains values to interchange for the critical variable. All
the child nodes contain values for variables in S which are compatible with some
subset of the neighborhood of their parents. At each node we compute consistent
tuples which contain values from the current node and all the values for variables
in S which appear in all the parent nodes on the path to the root node. �

Theorem 2.10
Admissible tuples of a JTT node are interchangeable.

Proof. Let t and t′ be two admissible tuples in a JTT node. We prove that if
t is compatible is a CSP solution, then t′ can replace it and vice versa. Thus,
they are interchangeable. Let’s suppose that t is part of the solution tuple s of
the CSP . That means that any value vn of any variable Xn in the neighborhood
is compatible with any value of the tuple t. By the construction of the JTT and
according to Definition 2.13, any pairs of values in t and t′ assigned to the same
variable of the tuple, are compatible with the same values of the variables in the
neighborhood. Thus, if a value x in tuple t is compatible with value vn of the
neighborhood, then also value x′ in tuple t′ in the same position as x 20 is also
compatible with vn. That, means one can interchange tuples t and t′ in a solution
and it will remain a solution. �

The above theorem proves interchangeability of two tuples containing values
in the interchangeable set but does not prove that these values are interchangeable.
In the above case they are interchangeable only in a certain context given by the
assignments of the JTT node. As in Definition 2.9, they are interchangeable if
for every tuple t containing one of them there is another tuple t′ that admits the
other such that t and t′ are consistent with the same value combinations outside the
dependent set. Thus, for every context there should exist a tuple of the dependent
set for each value in the interchangeable set in order to be interchangeable.

We prove that as follows:

Lemma 2.3
The values in the interchangeable set are NTI with respect to the set S if and
only if the JTT is compatible from the root node.

Proof. Note that in the JTT , tuples admissible for any node on the path from a
node n to the root node are compatible with all assignments as tuples admissible
for n. Thus, they can be substituted for tuples in n.

Consider a tuple t admissible at an arbitrary node n in the JTT . If the root
of the JTT is compatible, there must be at least one node on the path from n to
the root (including n) that contains a tuple for each value in the interchangeable
set, and these tuples can be substituted for t.

20This means that x and x′ are values assigned to the same variable X of the dependent set
S with compatible tuples t and t′.
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Conversely, assume that any tuple t can be substituted with some other tuple
t′ where the critical variables takes a different value in the interchangeable set.
Then t′ must be in the admissible tuples of a node on the path from the node
where t is admissible to the root of the JTT . Now consider t′ instead of t and
continue until we reach a t that is admissible at a node such that no node above
it has any admissible tuples. Then it can only be substituted with other tuples
admissible at the same node, and the subtree at that node must be compatible.
Thus, the JTT is compatible from its root node. �

Lemma 2.4
If the root of the JTT is not compatible, and there is a value in the interchangeable
set that does not occur in any of the admissible tuples of the nodes of the JTT ,
the values are not NTI for set S or any superset of set S.

Proof. In this case, there are tuples admissible for some node in the JTT that
cannot be substituted by a tuple where the critical variable would take on the
missing value because of inconsistencies in the set S ∪ {Xi}. Consequently, the
values cannot be NTI, and this will not change when the set S is enlarged. �

Complexity of JTT Algorithm. Consider that we construct the JTT for a de-
pendent set S of size s, and its corresponding JDT with a number k of leaves
annotations. In the worse case, each leaf branch have to be compared to all the
others in order to determine the relations in the JTT meaning a O(k(k − 1)/2)
complexity and thus, O(k2). Moreover, the complexity for comparing two branch
assignments is of O(s · d2), where d is the largest domain size of variables in the
assignments.

Algorithm for Searching Neighborhood Interchangeable Tuples (NTI)

In the following we describe the algorithm for computing the neighborhood partial
interchangeable tuples, based on the JTT , Lemma 2.3 and Lemma 2.4.

This algorithm uses the algorithms described in the two previous subsections:
DT (Algorithm 1), JDT (Algorithm 2) and JTT (Algorithm 7).

The algorithm NTI, see Algorithm 8, takes as input a critical variable Xi

and an interchangeable set I. It determines a dependent set S of minimum size
such that I is NTI with this dependent set. If no such set exists, it returns failure.

Algorithm 8 first computes the discrimination tree (DT ) (see Algorithm 1.)
to check whether I is neighborhood interchangeable. If this is the case, it returns
with S = φ. If not, it uses the DT to determine which variables to include in
the initial candidate dependent set S. All assignments which place values in I in
different branches in the DT must be included in any dependent set S for the
NTI.

It then enters a search for a minimal dependent set S, considering them in
the order of increasing size to ensure that the smallest is found first. For each
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Algorithm 8: Procedure Neighborhood Tuple Interchangeability (NTI).
Input : critical variable Xi and interchangeable set I.

1: construct DT for Xi.
2: if interchangeable set values are NI then
3: return (success, S = φ).
4: else
5: S ← variables that are involved in DT assignments that are

consistent with some values in the interchangeable set but not all.
6: OPEN ← ({S})
7: repeat
8: S ← first(OPEN), OPEN ← rest(OPEN).
9: construct JDT for S.

10: construct JTT .
11: if root node compatible then
12: return (success, S).
13: else
14: c ← sets of minimal combinations of nodes of the JTT such

that the union of their admissible tuples contains each value
of the interchangeable set at least once.

15: for c ∈ C do
16: NS ← S ∪ ⋃

n∈C . annotations of the arcs which are on the
path from root of JTT to node n.

17: if NS /∈ OPEN then
18: include NS in OPEN such that OPEN is ordered in

increasing size.
19: until OPEN = φ
20: return failure.

candidate set, it computes first the JDT using Algorithm 2 and then the JTT
using Algorithm 7. It then checks whether the JTT is compatible according to
Definition 2.13. If it is, then S is a correct dependent set and the algorithm ter-
minates.

If the JTT is not compatible, the algorithm generates all possible candi-
dates for S that could provide a set of admissible tuples containing all values in
the interchangeable set, and thus a compatible JTT . It adds these to the list of
candidates, and continues with the next candidate.

Following the example given in Figure 2.17 subsection for the computation
of tuple interchangeability for variable X3 and its interchangeable set I = {t, v},
we can see in Figure 2.17 that the root node of the JTT obtained in the right side
of the figure is not compatible. The consistent tuple we obtain from the root node
annotation is only : (X3 = t,X0 = v). As there is no consistent tuple for the other
value v of the interchangeable set we have to start searching through the JTT for
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a consistent child node.
The first child node X0 = x, gives the following consistent tuples: (X3 =

t,X0 = x), (X3 = t,X0 = v), (X3 = v,X0 = x) as we consider also the annotation
in its parent when we compute the tuples.

S2 = { X0, X2} 
JDT (S) :

X0 = tX0 = {x, y,v} 
X2 = {x, z} 
X3 = {t, v, z}

X3 = y 
X2 = y 

(x3 : t  x0 : v  x2 : x)  
   
(x3 : t  x0 : x  x2 : z)   
 
(x3 : t  x0 : y  x2 : x)  
 
(x3 : t  x0 : y  x2 : z) 
 
(x3 : t  x0 : v  x2 : z)  
 
(x3 : v  x0 : x  x2 : z)  
 
(x3 : v  x0 : y  x2 : x)  
 
(x3 : v  x0 : y  x2 : z) 
 

X0 = {x, y,v} 
X2 = {x, z} 
X3 = {t, v, z}

JTT (S2)

X3 = y 
X2 = y 

X0 = t

root

X1 = t

X4= y

X4= w

X5= z

X5 = w

X5 = r

X5 = s

X4= w

X5= z

X5 = w

X5 = r

X5 = s

X4= y

X4= w

X5= z

X5 = w

X5 = r

X5 = s

X4

X1

X4= s
X4= s
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Figure 2.18: Joint Discrimination Tree (JDT ) for the critical variable X3, inter-
changeable set I = {t, v} and dependent set S2 = {X0, X2} (left side). Joint
Tuple Tree (JTT ) for the critical variable X3, interchangeable set I = {t, v} and
dependent set S2 = {X0, X2} (right side).

As we obtain at least one tuple for each value from the interchangeable set
I = {t, v}, node X0 = x is consistent. As variable X2 makes a difference between
assignments of the root node and the child node X0 = x, we have to include it in
the dependent set S which now becomes S2 = {X0, X2} and reconstruct the JDT
for the new S, see Figure 2.18. In fact, the new candidate sets are: S2 = {X0, X2}
and S3 = {X0, X2, X4} but we choose the smallest candidate first. This time the
root node of the JTT is consistent as there is at least one consistent tuple for each
value in the interchangeable set I = {t, v}.

The algorithm next examines the dependent set S2 = {X0, X2}. The inter-
changeable tuples for the root node of the JTT are displayed in Figure 2.18. As
it now has tuples for all X3 = t and X3 = v, the root node is compatible and the
algorithm terminates.

We display more results by applying the NTI algorithm for the variables of
the problem in the Figure 2.1 in the Table 2.1.

We can see that for the critical variable X0 and interchangeable set I =
{x, y}, we obtained the dependent set S = {X0, X2}. For variable X3 by inter-
changing values {t, z, q}, the dependent set obtained is S = {X3, X2, X0}.
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Critical variable X0,
I = {x, y}, S = {X2}

Critical variable X3,
I = {t, z}, S = {X2, X0}

Critical variable X3,
I = {t, q}, S = {X2, X0}

(X0 = x, X2 = y),

(X0 = x, X2 = z),

(X0 = y, X2 = x),

(X0 = y, X2 = z)

(X3 = t, X2 = x, X0 = y),

(X3 = t, X2 = y, X0 = x),

(X3 = t, X2 = y, X0 = v),

(X3 = t, X2 = z, X0 = x),

(X3 = t, X2 = z, X0 = y),

(X3 = t, X2 = z, X0 = v),

(X3 = t, X2 = q, X0 = x),

(X3 = t, X2 = q, X0 = y),

(X3 = z, X2 = q, X0 = v),

(X3 = z, X2 = x, X0 = y),

(X3 = z, X2 = x, X0 = t),

(X3 = z, X2 = x, X0 = v),

(X3 = z, X2 = y, X0 = x),

(X3 = z, X2 = y, X0 = t),

(X3 = z, X2 = y, X0 = v),

(X3 = z, X2 = q, X0 = y),

(X3 = z, X2 = q, X0 = t),

(X3 = z, X2 = q, X0 = v)

(X3 = t, X2 = x, X0 = y),

(X3 = t, X2 = x, X0 = v),

(X3 = t, X2 = y, X0 = x),

(X3 = t, X2 = y, X0 = v),

(X3 = t, X2 = z, X0 = x),

(X3 = t, X2 = z, X0 = y),

(X3 = t, X2 = z, X0 = v),

(X3 = t, X2 = q, X0 = x),

(X3 = t, X2 = q, X0 = y),

(X3 = t, X2 = q, X0 = v),

(X3 = q, X2 = x, X0 = y),

(X3 = q, X2 = x, X0 = t),

(X3 = q, X2 = x, X0 = v),

(X3 = q, X2 = y, X0 = x),

(X3 = q, X2 = y, X0 = t),

(X3 = q, X2 = y, X0 = v),

(X3 = q, X2 = z, X0 = x),

(X3 = q, X2 = z, X0 = y),

(X3 = q, X2 = z, X0 = t),

(X3 = q, X2 = z, X0 = v)

Table 2.1: Tuples at the root node of the JTT for different critical variables and
interchangeable sets for the CSP of the Figure 2.1.

We can show:

Theorem 2.11
Algorithm 8 is sound: if it returns a dependent set S, then the set I is Neighborhood
Tuple Interchangeable for the critical variable Xi.

Algorithm 8 is also complete: if the set I is NTI for Xi, then it will find a smallest
dependent set S for this interchangeability.

Proof. Soundness follows from the fact that the algorithm checks compatibility of
the JTT by Lemma 2.3 this is a sufficient condition for NTI.

Completeness follows from the fact that the algorithm checks all sets S that
could satisfy the conditions of Lemma 2.3, and that the condition of Lemma 2.3 is
also a necessary condition for NTI. Furthermore, when the set c becomes empty
and there is no successor to a candidate S, then the algorithm has proven by
Lemma 2.4 that there cannot be NTI with dependent set S or any superset of S,
so it is not necessary to consider any possible indirect successors.
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Furthermore, the dependent sets are considered in order of increasing size so
that the first set that is found is guaranteed to be smallest. �

We note that the algorithm could be adapted to return all possible minimal
dependent sets for NTI by returning them one at a time in step 12 and continuing
the algorithm until the list OPEN becomes empty.

Generalization of NTI Algorithm

Solution update techniques can successfully apply the NTI algorithm in order to
adapt solutions. The NTI algorithm input has as input variable Xi for which one
might want to interchange the values in the interchangeable set I = {a, b}. The first
straightforward generalization is to consider a subdomain of values that we want
to interchange for variable Xi : I = {di ⊆ Di}. In this case, the algorithm requires
only slight modification in the its first part. It constructs the Discrimination Tree
for variable Xi and the values from the interchangeable I. Further, it constructs the
set S containing critical variable Xi and variables which make differences between
DT branches assignments 21. The algorithm continues as usual with JDT and
JTT algorithms for the obtained set of variables S.

Algorithm 8 can be forward generalized having as input a set of critical
variables S = {Xi1, Xi2, . . . , Xik} and their subdomains of values to interchange,
the interchangeable set I = {di1, . . . , dik}. In a solution update method one might
need to specify the variables he needs to update and the subdomains in which these
variables can take values. Again, the algorithm has to be slightly modified only in
the first part. Thus, it starts by constructing the JDT for the input set of critical
variables taking only the values in the interchangeable set I. The set S is further
extended with the variables making differences between all branches assignments
and next the algorithm flows as usual with the JDT and JTT construction for
the new S, searching for the minimal dependent set.

Complexity of NTI Algorithm

Most of the NTI algorithm complexity is generated by the computation of the
structures used by it: DT , JDT and JTT . The complexity of DT and JDT
algorithm are presented in the previous chapter, see Section 2.2. As presented in
Section 2.3.3, the complexity is computed when we apply the DT algorithm for
all the variables in the CSP , but in the NTI algorithm this complexity is reduced
drastically as we compute, for only one variable and its two values, the size of the
interchangeable set, of one critical variable from O(n2 ·d2) to O(n·d), where n is the
number of CSP variables and d the largest domain size. For the more generic case
when the input is a set of critical variables and their subdomains to interchange,
the complexity grows to O(s ·n ·d ·di), where s is the size of the critical set and di

21As the DT is constructed only for values contained in the interchangeable set I of variable
Xi, we consider all the branches of this DT to obtain the variables which differentiate them.
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the largest subdomain, n and d as specified previously. Moreover, its complexity
tends to be a function of the JDT structure computation: O(s(n− s) · d2), where
n is the size of the CSP , s is the size of the set S and d is the maximum domain
size of variables.

As shown in worst cases scenarios, the complexity of the complete algorithm
tends to be high but we can show experimentally that can be applied successfully
in practice. In the following section we present how it works on a graph coloring
example, present results on random generated problems and give heuristics which
trade on completeness but can reduce on complexity.

2.6.3 Results

In this section we describe results obtained during an empirical study for NTI
occurrence and spread in random generated problems. In order to understand
when NTI appears and how it depends on the problem structure, we consider
the four constraint problem parameters and tried to isolate them in terms of their
effects on the tuple interchangeability. The problem characteristics on which we
concentrate in our measurements were: the number of variables in the CSP , n,
the maximum domain size of the variables, dom, the tightness of the constraints,
t, and the constraint density, dens.

In our experiments, we measured two parameters of the NTI occurrence:

• the average tuple size per variable, Avs;

• the average number of interchangeable tuples per variable, Avt.

Both averages above are obtained by computing the sets of interchangeable
tuples for each value pair of each variable normalized to the domain size of the
variable.

The test were conducted in the following way: For each data point, we gen-
erated 20 random problems where CSP parameters on which we measure the
variation are held constant at fixed points while the others are either fixed or
randomly chosen as described in the following.

In Figure 2.19 we study the dependence of our two measures Avs and Avt on
the problem density. For each data point we generated 20 random problems with
the following parameters : n = 10, dom = 10, dens vary for each point in the set
{0.1, 0.3, . . . , 0.9} and t vary randomly in the interval [0.1, 0.9]. We can observe
that both measures Avs and Avt do not vary with the CSP density.

In Figure 2.20 we study how the measures Avs and Avt vary with the CSP
tightness. For each data point we generated 20 random problems with the following
parameters : n = 10, dom = 10, dens varies randomly in the interval [0.1, 0.9]
and t varies for each point in the set {0.1, 0.3, . . . , 0.9}. We can observe that mDS
set size increases with the CSP tightness. The number of interchangeable tuples
appears not to be dependent on the CSP tightness. Note that we also count in
our measurements tuples of one variable, thus the NI values.
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Figure 2.19: (a) The dependence of the interchangeable tuple size on the CSP
density. (b) The dependence of the interchangeable tuple number on the CSP
density.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

tightness

m
ea

su
re

 A
ve

ra
ge

 D
ep

en
de

nt
 S

et

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

tightness

m
ea

su
re

 A
ve

ra
ge

 n
um

be
r 

of
 T

up
le

s

(a) (b)

Figure 2.20: (a) The dependence of the interchangeable tuple size on the CSP
tightness. (b) The dependence of the interchangeable tuple number on the CSP
tightness.
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Figure 2.21: (a) The dependence of the interchangeable tuple size on the number
of variables in the CSP . (b) The dependence of the interchangeable tuple number
on the number of variables in the CSP .

In our experiments we measured as well the dependence of tuple occurrence
on the problem size. For the results obtained in Figure 2.21, we generated ran-
dom problems with the following parameters : n varies for each element in the
set {4, .., 9, 10}, dom varies for each element in the set {4, .., 9, 10}, dens varies
randomly in the interval [0.1, 0.9] and t varies randomly in the interval [0.1, 0.9].
In Figure 2.21(a), we can see that the interchangeable tuples size do not depend
on the size of the problem, while the number of interchangeable tuples increases
with the number of variables in the problem, see Figure 2.21(b).

From our empirical experimentation we derive the following conclusions:

• the interchangeable tuples size and their number do not depend on the CSP
density;

• the interchangeable tuples size and their number increases with the CSP
tightness, where the interchangeable tuples number is more sensitive to the
CSP tightness;

• the interchangeable tuples size do not depend on the problem size, while
the number of interchangeable tuples increases with the problem size. Both
measures increase with the domain size.

2.6.4 Conclusions

In this work, we have developed algorithms for computing minimal, and the glob-
ally minimum dependent set which contains PI values/variables, and the first
algorithm that allows finding of partial interchangeabilities without solving the
entire problem.
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We presented a novel interchangeability concept called Neighborhood Tuple
Interchangeability (NTI) and an algorithm for its computation. The NTI con-
cept turns out to be more useful than Neighborhood Partial Interchangeability as
defined earlier by Choueiry and Noubir ([28]). We have given an algorithm that
computes a smallest dependent set S for a desired interchangeability containing
NTI tuples. If the algorithm finds such a set, it is guaranteed that the set is indeed
partially interchangeable, but possibly with a smaller dependent set.

An interesting result is provided by Theorem 2.9: if the set is found to be
not NTI, then it can also be guaranteed to not be partially interchangeable at all.
Thus, we actually have a complete method to compute all partial interchangeable
values; however, it does not necessarily find the smallest dependent sets.

In experiments on random problems, we found that in general most values
seem to become interchangeable with dependent sets of manageable small size.
Thus, while the complexity of our methods are exponential relative to the size of
the dependent sets, we do not expect this to be a great problem in practice.

We have concentrated on computing NTI for a given critical variable and
interchangeable set. In the future, it would be interesting to investigate if synergies
can be obtained by computing NTI for all variables and domains in a single
algorithm, in particular if it is possible to rapidly isolate those interchangeable
sets for which the dependent sets are small.



Chapter 3

Interchangeability in Soft CSPs

The standard CSP framework proved to be generic but however has evident lim-
itations. This framework appears to be not very flexible when trying to represent
real life scenarios where the knowledge is not completely available nor crisp. For
this reason the soft constraint framework has been defined. It allows to the classical
notion of constraint the possibility of dealing with important features as fuzziness,
uncertainty optimization, probability, and partial satisfaction.

In this work we define interchangeability in the Soft CSP framework, we give
algorithms for its computation and study its occurrence and applicability.

3.1 Introduction

In many practical applications, constraints can be violated at a cost, and solving a
CSP thus means finding a value assignment of minimum cost. Various frameworks
for solving such soft constraints have been proposed [44, 34, 79, 38, 83, 14, 16, 8].

The soft constraints framework of c–semirings [14, 8] has been shown to
express most of the known variants through different instantiations of its operators,
and this is the framework we are considering in this work.

The most straightforward generalization of interchangeability to soft CSP
would require that exchanging one value for another does not change the quality of
the solution at all. This generalization is likely to suffer from the same weaknesses
as interchangeability in hard CSP , namely that it is very rare.

Fortunately, soft constraints also allow weaker forms of interchangeabil-
ity where exchanging values may result in a degradation of solution quality
by some measure δ. By allowing more degradation, it is possible to increase
the amount of interchangeability in a problem to the desired level. We define
δsubstitutability/interchangeability as a concept which ensures this quality. This
is particularly useful when interchangeability is used for solution adaptation.

Another use of interchangeability is to reduce search complexity by group-
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ing together values that would never give a sufficiently good solution. In
αsubstitutability/interchangeability, we consider values interchangeable if they
give equal solution quality in all solutions better than α, but possibly different
quality for solutions whose quality is ≤ α.

We thus introduce two notions: threshold α and degradation δ for
substitutability and interchangeability, (αsubstitutability/interchangeability and
δsubstitutability/interchangeability respectively). We show that they satisfy
analogous theorems to the ones already known for hard constraints. In
αinterchangeability, values are interchangeable in any solution that is better than
a threshold α, thus allowing to disregard differences among solutions that are not
sufficiently good anyway. In δinterchangeability, values are interchangeable if their
exchange could not degrade the solution by more than a factor of δ.

We give efficient algorithms to compute (δ/α)interchangeable sets of values
for a large class of SCSPs.

Just like for hard constraints, full interchangeability is hard to com-
pute, but can be approximated by neighborhood interchangeability which can
be computed efficiently and implies full interchangeability. We define the
same concepts for soft constraints, and prove that neighborhood implies full
(δ/α)substitutability/interchangeability. We give algorithms for neighborhood
(δ/α)substitutability/interchangeability, and we prove several interesting and use-
ful properties of the concepts.

Finally, we give two examples where (δ/α)interchangeability is applied to
solution adaptation in configuration problems with two different soft constraint
frameworks: delay and cost constraints, and show its usefulness in these practical
contexts.

3.2 Soft Constraint Satisfaction Problems (SCSPs)

Several formalization of the concept of soft constraints are currently available. In
the following, we refer to the one based on c–semirings [8, 13, 14, 17], which can
be shown to generalize and express many of the others [11, 12].

A soft constraint may be seen as a constraint where each instantiations of
its variables has an associated value from a partially ordered set which can be
interpreted as a set of preference values. Combining constraints will then have
to take into account such additional values, and thus the formalism has also to
provide suitable operations for combination (×) and comparison (+) of tuples of
values and constraints. This is why this formalization is based on the concept of
c–semiring, which is just a set plus two operations.

Semirings. A semiring is a tuple 〈A,+,×,0,1〉 such that:

• A is a set and 0,1 ∈ A;

• + is commutative, associative and 0 is its unit element;
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• × is associative, distributes over +, 1 is its unit element and 0 is its absorbing
element.

A c–semiring is a semiring 〈A,+,×,0,1〉 such that: + is idempotent, 1 is its
absorbing element and × is commutative.

Let us consider the relation ≤S over A such that a ≤S b iff a + b = b. Then
it is possible to prove that (see [14]):

• ≤S is a partial order;

• + and × are monotone on ≤S ;

• 0 is its minimum and 1 its maximum;

• 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a + b = lub(a, b) (where
lub is the least upper bound).

Moreover, if × is idempotent, then: + distributes over ×; 〈A,≤S〉 is a com-
plete distributive lattice and × its glb (greatest lower bound). Informally, the rela-
tion ≤S gives us a way to compare semiring values and constraints. In fact, when
we have a ≤S b, we will say that b is better than a. In the following, when the
semiring will be clear from the context, a ≤S b will be often indicated by a ≤ b.

Constraint Problems. Given a semiring S = 〈A,+,×,0,1〉 and an ordered set
of variables V over a finite domain D, a constraint is a function which, given an
assignment η : V → D of the variables, returns a value of the semiring.

By using this notation we define C = η → A as the set of all possible con-
straints that can be built starting from S, D and V .

Note that in this functional formulation, each constraint is a function (as
defined in [17]) and not a pair (as defined in [13, 14]). Such a function involves
all the variables in V , but it depends on the assignment of only a finite subset of
them. So, for instance, a binary constraint cx,y over variables x and y, is a function
cx,y : V → D → A, but it depends only on the assignment of variables {x, y} ⊆ V .
We call this subset the support of the constraint.

More formally, consider a constraint c ∈ C. We define its support as supp(c) =
{v ∈ V | ∃η, d1, d2.cη[v := d1] = cη[v := d2]}, where

η[v := d]v′ =

{
d if v = v′,
ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the assignment v := d1

(that is the operator [ ] has precedence over application). Note also that cη is the
application of a constraint function c : V → D → A to a function η : D → A;
what we obtain, is a semiring value cη = a.

A soft constraint satisfaction problem is a pair 〈C, con〉 where con ⊆ V and C
is a set of constraints: con is the set of variables of interest for the constraint set C,
which however may concern also variables not in con. Note that a classical CSP is
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a SCSP where the chosen c–semiring is: SCSP = 〈{false, true},∨,∧, false, true〉.
Fuzzy CSPs [81] can instead be modelled in the SCSP framework by choosing
the c–semiring SFCSP = 〈[0, 1], max, min, 0, 1〉. Many other “soft” CSPs (Prob-
abilistic, weighted, . . . ) can be modelled by using a suitable semiring structure
(Sprob = 〈[0, 1],max,×, 0, 1〉, Sweight = 〈R, min,+,+∞, 0〉, . . . ).

Fig. 3.1 shows the graph representation of a fuzzy CSP . Variables and con-
straints are represented respectively by nodes and by undirected (unary for c1 and
c3 and binary for c2) arcs, and semiring values are written to the right of the cor-
responding tuples. The variables of interest (that is the set con) are represented
with a double circle. Here we assume that the domain D of the variables contains
only elements a and b and c.

X Y

〈a〉 → 0.9
〈a〉 → 0.9

〈b〉 → 0.1 〈b〉 → 0.5
〈c〉 → 0.9 〈c〉 → 0.5

〈a, a〉 → 0.8

〈a, b〉 → 0.2

〈c, a〉 → 0.8

〈c, b〉 → 0.2

〈b, a〉 → 0

〈b, b〉 → 0

〈a, c〉 → 0.2

〈b, c〉 → 0.1

〈c, c〉 → 0.2

c1

c2

c3

Figure 3.1: A fuzzy CSP .

Combining and projecting soft constraints. Given the set C, the combination
function ⊗ : C × C → C is defined as (c1 ⊗ c2)η = c1η ×S c2η.

In words, combining two constraints means building a new constraint whose
support involves all the variables of the original ones, and which associates with
each tuple of domain values for such variables a semiring element which is ob-
tained by multiplying the elements associated by the original constraints to the
appropriate subtuples. It is easy to verify that supp(c1⊗c2) ⊆ supp(c1)∪supp(c2).

Given a constraint c ∈ C and a variable v ∈ V , the projection of c over
V − {v}, written c ⇓(V −{v}) is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d].

Informally, projecting means eliminating some variables from the support. This
is done by associating with each tuple over the remaining variables a semiring
element which is the sum of the elements associated by the original constraint to
all the extensions of this tuple over the eliminated variables. In short, combination
is performed via the multiplicative operation of the semiring, and projection via
the additive one.

Solutions. A solution of an SCSP P = 〈C, con〉 is the constraint Sol(P ) =
(
⊗

C) ⇓con. That is, we combine all constraints, and then project over the vari-
ables in con. In this way we get the constraint with support (not greater than)
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con which is “induced” by the entire SCSP . Note that when all the variables are
of interest we do not need to perform any projection.

For example, the solution of the fuzzy CSP of Fig. 3.1 associates a semiring
element to every domain value of variable x. Such an element is obtained by first
combining all the constraints together. For instance, for the tuple 〈a, a〉 (that
is, x = y = a), we have to compute the minimum between 0.9 (which is the
value assigned to x = a in constraint c1), 0.8 (which is the value assigned to
〈x = a, y = a〉 in c2) and 0.9 (which is the value for y = a in c3). Hence, the
resulting value for this tuple is 0.8. We can do the same work for tuple 〈a, b〉 → 0.2,
〈a, c〉 → 0.2, 〈b, a〉 → 0, 〈b, b〉 → 0, 〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and
〈c, c〉 → 0.2. The obtained tuples are then projected over variable x, obtaining the
solution 〈a〉 → 0.8, 〈b〉 → 0.1 and 〈c〉 → 0.8.

3.3 Defining Interchangeability in Soft CSPs

In soft CSPs, there is not any crisp notion of consistency. In fact, each tuple
is a possible solution, but with different level of preference. Therefore, in this
framework, the notion of interchangeability becomes finer: to say that values a
and b are interchangeable we have also to consider the assigned semiring level.

More precisely, if a domain element a assigned to variable v can be substituted
in each tuple solution with a domain element b without obtaining a worse semiring
level we say that b is full substitutable for a.

Definition 3.1 (Full Substitutability (FS )) Consider two domain values b and a for
a variable v, and the set of constraints C; we say that b is Full Substitutable for
a on v (b ∈ FSv(a)) if and only if

⊗
Cη[v := a] ≤S

⊗
Cη[v := b]

When we restrict this notion only to the set of constraints Cv that involves
variable v we obtain a local version of substitutability.

Definition 3.2 (Neighborhood Substitutability (NS )) Consider two domain values
b and a for a variable v, and the set of constraints Cv involving v; we say that b
is neighborhood substitutable for a on v (b ∈ NSv(a)) if and only if

⊗
Cvη[v := a] ≤S

⊗
Cvη[v := b]

When the relations hold in both directions, we have the notion of
Full/Neighbourhood interchangeability of b with a.

Definition 3.3 (Full and Neighborhood Interchangeability (FI and NI )) Consider
two domain values b and a, for a variable v, the set of all constraints C and the
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set of constraints Cv involving v. We say that b is fully interchangeable with a on
v (FI v(a/b)) if and only if b ∈ FSv(a) and a ∈ FSv(b), that is⊗

Cη[v := a] =
⊗

Cη[v := b].

We say that b is Neighborhood interchangeable with a on v (NI v(a/b)) if and only
if b ∈ NS v(a) and a ∈ NS v(b), that is⊗

Cvη[v := a] =
⊗

Cvη[v := b].

This means that when a and b are interchangeable for variable v they can be
exchanged without affecting the level of any solution.

Two important results that hold in the crisp case can be proven to be
satisfied also with soft CSPs: transitivity and extensivity of interchangeabil-
ity/substitutability.

Theorem 3.1: Extensivity: NS =⇒ FS and NI =⇒ FI .
Consider two domain values b and a for a variable v, the set of constraints C
and the set of constraints Cv involving v. Then, neighborhood (substitutability)
interchangeability implies full (substitutability) interchangeability.

Proof. By definition of neighborhood substitutability,

b ∈ NS v(a) ⇐⇒ ∀η,
⊗

Cvη[v := a] ≤S

⊗
Cvη[v := b].

Now, since the assignments v := a and v := b only involve constraints in Cv,
and for the extensivity properties of times, we easily have that

∀η,
⊗

Cη[v := a] ≤S

⊗
Cη[v := b],

that is b ∈ FSv(a). Easily, we can extend the result to interchangeability. �

Theorem 3.2: Transitivity: b ∈ NS v(a), a ∈ NS v(c) =⇒ b ∈ NS v(c).
Consider three domain values a, b and c, for a variable v. Then,

b ∈ NS v(a), a ∈ NSv(c) =⇒ b ∈ NS v(c).

Similar results hold for FS ,NI and FI .

Proof. By definition of neighborhood substitutability,

b ∈ NSv(a) ⇐⇒ ∀η,
⊗

Cvη[v := a] ≤S

⊗
Cvη[v := b] and,

a ∈ NSv(c) ⇐⇒ ∀η,
⊗

Cvη[v := c] ≤S

⊗
Cvη[v := a].

Now, for transitivity of ≤S , we easily have that

∀η,
⊗

Cη[v := c] ≤S

⊗
Cη[v := b],
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that is b ∈ NS v(c). Easily, we can extend the result for FS ,NI and FI .
�

As an example of interchangeability and substitutability consider the fuzzy
CSP represented in Fig. 3.1. The domain value c is neighborhood interchangeable
with a on x (NI x(a/c)); in fact, c1 ⊗ c2η[x := a] = c1 ⊗ c2η[x := c] for all η.

The domain values c and a are also neighborhood substitutable for b on x
({a, c} ∈ NS v(b)). In fact, for any η we have c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := c]
and c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := a].

3.3.1 Relaxed Soft Interchangeability – Degradation and Threshold

In soft CSPs, any value assignment is a solution, but may have a very bad prefer-
ence value. This allows broadening the original interchangeability concept to one
that also allows degrading the solution quality when values are exchanged. We call
this δinterchangeability, where δ is the degradation factor.

When searching for solutions to soft CSP , it is possible to gain efficiency
by not distinguishing values that could in any case not be part of a solution of
sufficient quality. In αinterchangeability, two values are interchangeable if they do
not affect the quality of any solution with quality better than α. We call α the
threshold factor. Moreover, sometimes we are just looking for any solution greater
than a certain level α. In this case, also the notion of αinterchangeability could be
too strict. For this motivation we define also a more relaxed notion of threshold
that we call α−set.

Both concepts can be combined, i.e. we can allow both degradation and limit
search to solutions better than a certain threshold (δ

αinterchangeability).
By extending the previous definitions we can define thresholds and degrada-

tion version of full/neighbourhood substitutability/interchangeability.

Definition 3.4 (
δ
Full/Neighbourhood Substitutability (

δFS/NS )) Consider two
domain values b and a for a variable v, the set of constraints C and a semi-
ring level δ; we say that b is δfully substitutable for a on v (b ∈ δFSv(a)) if and
only if for all assignments η,⊗

Cη[v := a] ×S δ ≤S

⊗
Cη[v := b]

It is δneighborhood substitutable if the condition holds for C being the subset of
the constraints that have v as a variable.

Definition 3.5 (αFull Substitutability (αFS )) Consider two domain values b and a,
for a variable v, the set of constraints C and a semiring level α; we say that b is
αfull substitutable for a on v (b ∈ αFSv(a)) if and only if for all assignments η,⊗

Cη[v := a] ≥ α =⇒
⊗

Cη[v := a] ≤S

⊗
Cη[v := b]
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Definition 3.6 (αFull/Neighbourhood Substitutability (αFS/NS )) Consider two
domain values b and a, for a variable v, the set of constraints C and a semi-
ring level α; we say that b is αfully substitutable for a on v (b ∈ αFSv(a)) if and
only if for all assignments η,⊗

Cη[v := a] ≥S α =⇒
⊗

Cη[v := a] ≤S

⊗
Cη[v := b]

It is αneighborhood substitutable if the condition holds for C being the subset of
the constraints that have v as a variable.

Definition 3.7 (α−setFull/Neighbourhood Substitutability (α−setFS/NS )) Con-
sider two domain values b and a, for a variable v, the set of constraints C and a
semiring level α; we say that b is α−setfull substitutable for a on v (b ∈ α−setFSv(a))
if and only if for all assignments η,⊗

Cη[v := a] ≥S α =⇒
⊗

Cη[v := b] ≥S α

It is α−setneighborhood substitutable if the condition holds for C being the subset
of the constraints that have v as a variable.

Definition 3.8 (Full/Neighbourhood Soft Interchangeability) Consider two domain
values b and a, for a variable v, the set of constraints C. Values a and b are

• δfully/neighbourhood interchangeable iff they are
δfully/neighbourhood substitutable both ways.

• αfully/neighbourhood interchangeable iff they are
αfully/neighbourhood substitutable both ways.

• α−setfully/neighbourhood interchangeable iff they are
α−setfully/neighbourhood substitutable both ways.

It is easy to see from the definition that

Theorem 3.3: α =⇒ α−set.
Consider two domain values a and b, for a variable v, and a thresholds α. Then,

a ∈ αNSv(b) =⇒ a ∈ α−setNSv(b)

Similar results holds for FS ,NI ,FI .

Proof. By definition of α and α−set substitutability,

b ∈ αFSv(a) ⇐⇒
∀η,

⊗
Cη[v := a] ≥S α =⇒

⊗
Cη[v := a] ≤S

⊗
Cη[v := b], and,

b ∈ α−setFSv(a) ⇐⇒
∀η,

⊗
Cη[v := a] ≥S α =⇒

⊗
Cη[v := b] ≥S α.
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Now, when
⊗

Cη[v := a] < α both the clauses are true; when
⊗

Cη[v := a] ≥S α,
by hypothesis, we have

⊗
Cη[v := a] ≤S

⊗
Cη[v := b]. For transitivity, we easily

have
⊗

Cη[v := b] ≥S α. We can extend the result for NS ,NI and FI . �
As an example consider Fig. 3.1. The domain values c and b for variable y are

0.2Neighborhood Interchangeable. In fact, the tuple involving c and b only differ
for the tuple 〈b, c〉 that has value 0.1 and for the tuple 〈b, b〉 that has value 0. Since
we are interested only to solutions greater than 0.2, these tuples are excluded from
the match.

We can see also that values a and b for variable y are 0.2−setNeighborhood.
In fact the set of solution tuples with value greater than 0.2 are the same. Notice
that a and b are not 0.2Neighborhood Interchangeable because tuples 〈a, a〉 and
〈a, b〉 have values 0.8 and 0.2 respectively.

The meaning of degradation assume different meanings when instantiated to
different semirings:

1. fuzzy CSP : b ∈ δFSv(a) gets instantiated to:

min(minc∈C(cη[v := a]), δ) ≤ minc∈C(cη[v := b])

which means that changing v := b to v := a does not make the solution worse
than before or worse than δ. In the practical case where we want to only
consider solutions with a quality better than δ, this means that substitution
will never put a solution out of this class.

2. weighted CSP : b ∈ δFSv(a) gets instantiated to:∑
c∈C

cη[v := a] + δ ≥
∑
c∈C

cη[v := b]

which means that the penalty for the solution does not increase by more than
a factor of δ. This allows for example to express that we would not want to
tolerate more than δ in extra cost. Note, by the way, that ≤S translates to
≥ in this version of the soft CSP .

3. probabilistic CSP : b ∈ δFSv(a) gets instantiated to:

(
∏
c∈C

cη[v := a]) · δ ≤
∏
c∈C

cη[v := b]

which means that the solution with v = b is not degraded by more than a
factor of δ from the one with v = a.

4. crisp CSP : b ∈ δFSv(a) gets instantiated to:

(
∧
c∈C

cη[v := a]) ∧ δ ⇒ (
∧
c∈C

cη[v := b])

which means that when δ = true, whenever a solution with v = a satisfies
all constraints, so does the same solution with v = b. When δ = false, it is
trivially satisfied (i.e. δ is too loose a bound to be meaningful).
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This shows that the definitions correspond well to the intuitions, and allow
us to tune the amount of substitutability/interchangeability by varying δ, with
δ = 1 being the strictest.

3.3.2 Properties of Degradations and Thresholds

As it is very complex to determine full interchangeability/substitutability, we
start by showing the fundamental theorem that allows us to approximate
δ
/α/α−setFS/FI by δ

/α/α−setNS/NI :

Theorem 3.4: Extensivity.
δneighborhood substitutability implies δfull substitutability, αneighborhood sub-
stitutability implies αfull substitutability and α−setneighborhood substitutability
implies α−setfull substitutability..

Proof. • δ: Since the assignments v := a and v := b only involve con-
straints in Cv, and for the extensivity properties of times, we easily have
that

b ∈ NS v(a) ⇐⇒
∀η,

⊗
Cvη[v := a] ×S δ ≤S

⊗
Cvη[v := b]

=⇒
∀η,

⊗
Cη[v := a] ×S δ ≤S

⊗
Cη[v := b]

⇐⇒ b ∈ FSv(a).

• α: When
⊗

Cvη[v := a] < α also
⊗

Cη[v := a] < α, so both the clauses
are true; when

⊗
Cvη[v := a] ≥S α, since

⊗
Cvη[v := a] ≤S

⊗
Cvη[v := b],

we have by extensivity
⊗

Cη[v := a] ≤S

⊗
Cη[v := b].

• α−set: As before, when
⊗

Cvη[v := a] < α also
⊗

Cη[v := a] < α, so
both the clauses are true. When

⊗
Cvη[v := a] ≥S α, since by hypothesis

b ∈ α−setFSv(a), I have
⊗

Cvη[v := b] ≥S α; now per extensivity we have
also

⊗
Cη[v := b] ≥S α.

Easily, we can extend the result to interchangeability. �
This theorem is of fundamental importance since it gives us a way to approxi-

mate full interchangeability by neighborhood interchangeability which is much less
expensive to compute.

Theorem 3.5: Transitivity using thresholds and degradations.
Consider three domain values a, b and c, for a variable v. Then,

b ∈ δ1NS v(a), a ∈ δ2NSv(c) =⇒ b ∈ δ1×δ2NSv(c) and
b ∈ α1

NS v(a), a ∈ α2
NSv(c) =⇒ b ∈ α1+α2

NSv(c).
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Similar results holds for FS ,NI ,FI .

Proof. • δ: By definition

a ∈ δ2NS v(c) ⇐⇒ ∀η,
⊗

Cvη[v := c] ×S δ2 ≤S

⊗
Cvη[v := a].

For monotonicity we have

∀η,
⊗

Cvη[v := c] ×S δ2 ×S δ1 ≤S

⊗
Cvη[v := a] ×S δ1.

Now, by definition

b ∈ δ1NSv(a) ⇐⇒ ∀η,
⊗

Cvη[v := a] ×S δ1 ≤S

⊗
Cvη[v := b].

For transitivity we easily have

∀η,
⊗

Cvη[v := c] ×S δ2 ×S δ1 ≤S

⊗
Cvη[v := b] ⇐⇒ b ∈ δ1×δ2NS v(c).

• α: By hypothesis we have

b ∈ α1
NSv(a) ⇐⇒⊗

Cvη[v := a] ≥S α1 =⇒
⊗

Cvη[v := a] ≤S

⊗
Cvη[v := b] and,

a ∈ α2
NSv(c) ⇐⇒⊗

Cvη[v := c] ≥S α2 =⇒
⊗

Cvη[v := c] ≤S

⊗
Cvη[v := a].

Since α1 + α2 ≥S α1 and α1 + α2 ≥S α2 and transitivity of =⇒ , we have⊗
Cvη[v := a] ≥S α1 + α2 =⇒

⊗
Cvη[v := a] ≤S

⊗
Cvη[v := b] and,⊗

Cvη[v := c] ≥S α1 + α2 =⇒
⊗

Cvη[v := c] ≤S

⊗
Cvη[v := a].

Now for transitivity of ≤S , we have⊗
Cvη[v := c] ≥S α1 + α2 =⇒

⊗
Cvη[v := c] ≤S

⊗
Cvη[v := b]

⇐⇒ b ∈ α1+α2
NS v(c).

Easily, we can extend the result to FS ,NI ,FI . �

In particular when α1 = α2 = α and δ1 = δ2 = δ we have:

Corollary 3.1: Transitivity and equivalence classes.
Consider three domain values a, b and c, for a variable v. Then,
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• Threshold interchangeability is a transitive relation, and partitions the set of
values for a variable into equivalence classes, that is

b ∈ αNS v(a), a ∈ αNSv(c) =⇒ b ∈ αNSv(c)

αNI v(b/a), αNI v(a/c) =⇒ αNI v(b/c)
b ∈ α−setNS v(a), a ∈ α−setNSv(c) =⇒ b ∈ α−setNSv(c)

α−setNI v(b/a), α−setNI v(a/c) =⇒ α−setNI v(b/c).

• If the ×S–operator is idempotent, then degradation interchangeability is a
transitive relation, and partitions the set of values for a variable into equiv-
alence classes, that is

b ∈ δNSv(a), a ∈ δNS v(c) =⇒ b ∈ δNS v(c)
δNI v(b/a), δNI v(a/c) =⇒ δNI v(b/c).

Proof. • δ: Suppose to have delta1 = δ2 = δ. Since times is idempotent,
we have δ1 × δ2 = δ. Using the results of the previous theorem the corollary
easily follows.

• α: Since when alpha1 = α2 = α we have α1 + α2 = α, the corollary
easily follows from the previous theorem.

• α−set: By hypothesis we have

b ∈ αNS v(a) ⇐⇒
⊗

Cη[v := a] ≥S α =⇒
⊗

Cη[v := b] ≥S α and,

a ∈ αNS v(c) ⇐⇒
⊗

Cη[v := c] ≥S α =⇒
⊗

Cη[v := a] ≥S α.

For transitivity of =⇒ , we have⊗
Cη[v := c] ≥S α =⇒

⊗
Cη[v := a] ≥S α.

Interchangeability easily follows. �
By using degradations and thresholds we have a nice way to decide when

two domain values for a variable can be substitutable/interchangeable. In fact, by
changing the α or δ parameter we can obtain different results.

In particular we can show that an extensivity results for the parameters hold.
In fact, it is straightforward to notice that if two values are δ

αsubstitutable, they
have to be also δ′

α′substitutable for any δ′ ≤ δ and α′ ≥ α.

Theorem 3.6: Extensivity for α and δ.
Consider two domain values a and b, for a variable v, two thresholds α and α′ s.t.
α ≤ α′ and two degradations δ and δ′ s.t. δ ≥ δ′. Then,

a ∈ δNS v(b) =⇒ a ∈ δ′
NSv(b) and a ∈ αNSv(b) =⇒ a ∈ α′NS v(b)

Similar results holds for FS ,NI ,FI .
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Proof. • δ: By definition

a ∈ δNS v(b) ⇐⇒ ∀η,
⊗

Cvη[v := b] ×S δ ≤S

⊗
Cvη[v := a].

By monotonicity of times, we have⊗
Cvη[v := b] ×S δ′ ≤S

⊗
Cvη[v := b] ×S δ.

By transitivity of ≤S

∀η,
⊗

Cvη[v := b] ×S δ′ ≤S

⊗
Cvη[v := a] ⇐⇒ a ∈ δ′

NS v(b).

• α: By Definition we have

a ∈ αNS v(b) ⇐⇒⊗
Cvη[v := b] ≥S α =⇒

⊗
Cvη[v := b] ≤S

⊗
Cvη[v := a].

Since α′ ≥S α, we have⊗
Cvη[v := b] ≥S α′ =⇒

⊗
Cvη[v := b] ≥S α.

By Transitivity of =⇒ we have⊗
Cvη[v := b] ≥S α′ =⇒

⊗
Cvη[v := b] ≤S

⊗
Cvη[v := a]

⇐⇒ a ∈ α′NS v(b).

Easily, we can extend the result to FS ,NI ,FI . �
As a corollary when threshold and degradation are 0 or 1 we have some

special results.

Corollary 3.2
When α = 0 and δ = 1, we obtain the non approximated versions of NS . When
α = 1 and δ = 0, all domain values are substitutable.

∀a, b, a ∈ 0NSv(b) and a ∈ 1NSv(b) ⇐⇒ a ∈ NS(b)

∀a, b, a ∈ 1NS v(b) and a ∈ 0NS v(b).

Similar results holds for FS ,NI ,FI .

Proof. • When α = 0, we always have
⊗

Cvη[v := b] ≥S α. So to check if
a ∈ 0NS v(b) we need only to check that

⊗
Cvη[v := b] ≤S

⊗
Cvη[v := a].

• When δ = 1, we have
⊗

Cvη[v := b] ×S δ =
⊗

Cvη[v := b]. So to check if
a ∈ 1NS v(b) we need only to check that

⊗
Cvη[v := b] ≤S

⊗
Cvη[v := a].

�
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Let us remind that degradations and thresholds can be used together; so we
easily have

• 1
0NS = 0NS = 1NS = NS ;

• NS =⇒ δNS =⇒ δ
αNS for any δ and α;

• NS =⇒ αNS =⇒ δ
αNS for any δ and α.

3.4 Algorithms for Computing Interchangeability in

Soft CSPs

The result of Theorem 3.1 is fundamental since it gives us a way to ap-
proximate full substituability/interchangeability by neighborhood substituabil-
ity/interchangeability which is much less costly to compute.

The most general algorithm for neighborhood substituabil-
ity/interchangeability in the soft CSP framework is to check for each pair
of values whether the condition given in the definition holds or not. This
algorithm has a time complexity exponential in the size of the neighborhood
and quadratic in the size of the domain (which may not be a problem when
neighborhoods are small).

Better algorithms can be given when the times operator of the semiring is
idempotent. In this case, instead of considering the combination of all the con-
straint Cv involving a certain variable v, we can check the property we need
(NS/NI and their relaxed versions δ

αNS/NI ) on each constraint itself.

Theorem 3.7
Consider two domain values b and a, for a variable v, and the set of constraints
Cv involving v. Then we have ∀c ∈ Cv:

cη[v := a] ≤S cη[v := b] =⇒ b ∈ NSv(a) (3.1)
(cη[v := a] ≥S α =⇒ cη[v := a] ≤S cη[v := b]) =⇒ b ∈ αNS v(a). (3.2)

If the times operator of the semiring is idempotent we also have:

∀c ∈ Cv.cη[v := a] ×S δ ≤S cη[v := b] =⇒ b ∈ δNS v(a) (3.3)
(cη[v := a] ≥S α =⇒ cη[v := b] ≥S α) =⇒ b ∈ α−setNS v(a). (3.4)

Proof. 1. Easily follows from the monotonicity of times.

2. For extensivity of times we have
⊗

Cvη[v := a] ≤S α =⇒ cη[v := a] ≥S α.
For monotonicity of times we have cη[v := a] ≤S cη[v := b] =⇒ ⊗

Cvη[v :=
a] ≤S

⊗
Cvη[v := b]. The thesis follows from transitivity of =⇒ .

3. For extensivity of times we have
⊗

Cvη[v := a] ≤S α =⇒ cη[v := a] ≥S α.
For monotonicity and idempotency of times we have cη[v := a] ≤S α =⇒⊗

Cvη[v := a] ≤S α. The thesis follows from transitivity of =⇒ .
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4. Easily follows from monotonicity and idempotency of times. �

By using Theorem 3.7 (and Corollary 3.1 for δ/α/α−setNS ) we can find sub-
stitutable/interchangeable domain values more efficiently. Algorithm 9 shows an
algorithm that can be used to find domain values that are Neighborhood Inter-
changeable. It uses a data structure similar to the discrimination trees.

Algorithm 9: Algorithm to compute neighborhood interchangeable sets for
variable vi.

1: Create the root of the discrimination tree for variable vi

2: Let Cvi
= {c ∈ C | vi ∈ supp(c)}

3: Let Dvi
= {the set of domain values dvi

for variable vi}
4: for all dvi

∈ Dvi
do

5: for all c ∈ Cv do
6: execute Algorithm NI –Nodes(c, v, dvi

) to build the nodes
associated with c

7: Go back to the root of the discrimination tree.

Algorithm 9 can compute different versions of neighborhood interchangeabil-
ity depending on the algorithm NI−nodes used. Algorithm 10 shows the simplest
version without threshold or degradation.

Algorithm 10: NI–Nodes(c, v, dvi
) for Soft–NI .

1: for all assignments ηc to variables in supp(c) do
2: compute the semiring level β = cηc[vi := dvi

],
3: if there exists a child node corresponding to 〈c = ηc, β〉 then
4: move to it,
5: else
6: construct such a node and move to it.
7: Add vi, {dvi

} to annotation of the last build node,

We can show that Algorithm 9 with procedure Algorithm 10 is sound (that
is compute correct classes of equivalence for NI .

Theorem 3.8: Soundness of NI algorithm.
Algorithm 9 using Algorithm 10 returns as a result a subset of the neighborhood
interchangeable sets.

Proof. By looking at Algorithm 10, two domain values dvi
and d′vi

will be in the
same leaf node, if and only if they follow the same path. They follow the same
path if and only if for all η, and for all c ∈ C, cη[vi := dvi

] = cη[vi := d′vi
]. This can

be rewritten as cη[vi := dvi
] ≤S cη[vi := d′vi

] and cη[vi := d′vi
] ≤S cη[vi := dvi

].
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Now by Theorem 3.7 this is equivalent to dvi
∈ NS vi

(d′vi
) and d′vi

∈ NSvi
(dvi

),
that is NI vi

(dvi
/d′vi

). �
The Algorithm 10 is similar to that defined by Freuder in [42], and when we

consider the semiring for classical CSPs SCSP = 〈{false, true},∨,∧, false, true〉
and all constraints are binary, it computes the same result. Notice that for each
node we add also an information representing the cost of the assignment ηc.

When all constraints are binary, considering all constraints involving variable
v is the same as considering all variables connected to v by a constraint, and our
algorithm performs steps as that given by Freuder.

We can determine the complexity of the algorithm by considering that the
algorithm calls NI − Nodes for each k − −ary constraint exactly once for each
value of each the k variables; this can be bounded from above by k ∗ d with d the
maximum domain size. Thus, given m constraints, we obtain a bound of

O(m ∗ k ∗ d ∗ O(AlgorithmNI−nodes)).

The complexity of AlgorithmNI−nodes strictly depends on the size of the
domain d and from the number of variables k involved in each constraint and is
given as

O(AlgorithmNI−nodes) = dk−1.

For complete constraint graphs of binary constraints (k = 2), we obtain the same
complexity bound of O(n2d2) as Freuder in [42].

Algorithm 11: NI–Nodes(c, v, dvi
) for Soft αNI .

1: for all assignments ηc to variables in supp(c) s.t. β = cηc[vi := dvi
] and

α ≤S β do
2: if there exists a child node corresponding to 〈c = ηc, β〉 then
3: move to it,
4: else
5: construct such a node and move to it.
6: Add vi, {dvi

} to annotation of the last build node,

Algorithms for the relaxed versions of NI are obtained by substituting differ-
ent versions of Algorithm 10. For αNI , the algorithm needs to only consider tuples
whose semiring value is greater than α, as shown in Algorithm 11.

Theorem 3.9: Soundness of the αNI algorithm.
Algorithm 9 using Algorithm 11 returns as a result a subset of the
αNeighborhood interchangeable values.

Proof. By looking at Algorithm 11, two domain values dvi
and d′vi

will be in the
same leaf node, if and only if they follow the same path. They follow the same
path if and only if for all η, and for all c ∈ C,
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• both cη[vi := dvi
] and cη[vi := d′vi

] have a semiring value less than α, or

• cη[vi := dvi
] = cη[vi := d′vi

]

This can be written as:

(¬(cη[vi := dvi
] ≥ α)∧¬(cη[vi := d′vi

] ≥ α))∨(cη[vi := dvi
] = cη[vi := d′vi

]) (3.5)

which, by distributing the first two terms, is equivalent to:

cη[vi := dvi
] ≥ α =⇒ (cη[vi := dvi

] ≤ cη[vi := d′vi
])

∧
cη[vi := d′vi

] ≥ α =⇒ (cη[vi := d′vi
] ≤ cη[vi := dvi

]).

Now by Theorem 3.7 this implies dvi
∈ αNS vi

(d′vi
) and d′vi

∈ αNSvi
(dvi

),
that is αNI vi

(dvi
/d′vi

). �

Algorithm 12: NI–Nodes(c, v, dvi
, α) for Soft α−setNI .

1: for all assignments ηc to variables in supp(c) do
2: compute the semiring level β = cηc[vi := dvi

],
3: if β ≥ α then
4: β := α {I do not want to discriminate in this case},
5: else
6: β := α {Does not matter how bigger than α}.
7: if there exists a child node corresponding to 〈c = ηc, β〉 then
8: move to it,
9: else

10: construct such a node and move to it.
11: Add vi, {dvi

} to annotation of the last build node,

In Algorithm 12 instead, we have to filter out the tuples whose semiring value
is lower than α and we do not make any difference among tuples greater than α.

Theorem 3.10: Soundness of α−setNI algorithm.
For semiring with idempotent ×–operator, Algorithm 9 using Algorithm 12 returns
as result a subset of the α−setNeighborhood interchangeable values.

Proof. By looking at Algorithm 12, two domain values dvi
and d′vi

will be in the
same leaf node, only if they follow the same path. If they follow the same path,
means that for all η, and for all c ∈ C,

• both cη[vi := dvi
] and cη[vi := d′vi

] have a semiring value not greater than α,
or

• both have to be bigger than α.
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This is is written as:

¬((cη[vi := dvi
] ≥ α) ∨ (cη[vi := d′vi

] ≥ α))
∨

(cη[vi := dvi
] ≥ α) ∧ (cη[vi := d′vi

] ≥ α).

which by distributions transforms into:

(¬(cη[vi := dvi
] ≥ α) ∨ (cη[vi := dvi

] ≥ α))∧
(¬(cη[vi := dvi

] ≥ α) ∨ (cη[vi := d′vi
] ≥ α))∧

(¬(cη[vi := d′vi
] ≥ α) ∨ (cη[vi := dvi

] ≥ α))∧
(¬(cη[vi := d′vi

] ≥ α) ∨ (cη[vi := d′vi
] ≥ α))

and by elimination of tautologies:

(¬(cη[vi := dvi
] ≥ α) ∨ (cη[vi := d′vi

] ≥ α))∧
(¬(cη[vi := d′vi

] ≥ α) ∨ (cη[vi := dvi
] ≥ α))

Using the fact that a =⇒ B ≡ ¬A ∨ B this can be rewritten as:

((cη[vi := dvi
] ≥ α) =⇒ (cη[vi := d′vi

] ≥ α))∧
((cη[vi := d′vi

] ≥ α) =⇒ (cη[vi := dvi
] ≥ α)).

Now by Theorem 3.7 this means that dvi
∈ α−setNS vi

(d′vi
) and d′vi

∈
α−setNS vi

(dvi
), that is α−setNI vi

(dvi
/d′vi

). �

Algorithm 13: NI–Nodes(c, v, dvi
, δ) for Soft δNI .

1: for all assignments ηc to variables in supp(c) do
2: compute the level β = cηc[vi := dvi

], and the bound κ = β × δ,
3: if there exists a child node corresponding to 〈κ̄, (c = ηc), β̄〉 with

(κ̄ ≤ β) ∧ (κ ≤ β̄) then
4: move to it and change the label to 〈lub(κ̄, κ), (c = ηc), glb(β̄, β)〉,
5: else
6: construct the node 〈κ, (c = ηc), β〉 and move to it.
7: Add vi, {dvi

} to annotation of the last build node,

For δNI , the algorithm needs to only consider tuples that can cause a degra-
dation by more than δ, as shown in Algorithm 13. The idea here is to save in each
node the information needed to check at each step δNS in both directions. In a se-
miring with total order, the information represent the ‘interval of degradation’. As
both algorithms consider the same assignments as Algorithm 10, their complexity
remains unchanged at O(dk−1).
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Theorem 3.11: Soundness of the δNI algorithm.
For semirings with idempotent × operator, Algorithm 9 using Algorithm 13 gives
as result a subset of the δinterchangeabilities.

Proof. By looking at Algorithm 13, two domain values dvi
and d′vi

will be in the
same leaf node if and only if they follow the same path. Consider now for each
node related to constraint c and to the assignment η, cηc[vi := dvi

] = β, κ = β×δ,
cηc[vi := d′vi

] = β′, and κ′ = β′×δ. If they follow the same path, each of the nodes
will have a label 〈lub(κ̄, κ, κ′), c = ηc, glb(β̄, β, β′)〉, where κ̄ and β̄ are determined
by other assignments that have passed through the node.

Because of the condition in step 3 of Algorithm 13, the algorithm ensures
that lub(κ̄, κ, κ′) ≤ glb(β̄, β, β′). It follows that (κ′ ≤ β) and κ ≤ β′.

By Theorem 3.7 this means that dvi
∈ δNS vi

(d′vi
) and d′vi

∈ δNSvi
(dvi

), that
is δNI vi

(dvi
/d′vi

). �

3.5 Soft Constraint Satisfaction for Configuration

Fig. 3.2 shows the graph representation of a CSP which might represent a car
configuration problem.

M:{s,m,l} E:{s,l,d}

T:{a,m} A:{y,n}

C1

C2

C4
C3

Figure 3.2: Example of a CSP modeling car configuration. It has 4 variables: M =
model, T = transmission, A = Air Conditioning, E = Engine.

A product catalog might represent the available choices through a soft CSP .
With different choices of semiring, the CSP of Fig. 3.2 can represent different
problem formulations:
Example 21 For optimizing the cost of the product, a representation as a
weighted CSP might be most appropriate. Here, the semiring models the cost
of the different options and their integration with the others, using the semiring:
< �+,min,+,+∞, 0 >. We might have the constraints:

C1 =

M
s m l

T a ∞ 5 3
m 2 3 50

C2 =

M
s m l

s 3 5 ∞
E l 30 3 3

d 5 5 ∞
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C3 =

E
s l d

A y 5 2 7
n 0 30 0

C4 =

E
s l d

T a ∞ 3 ∞
m 4 10 5

and also unary constraints CM , CE , CT and CA that model the cost of the
components:

CM =
s m l
10 20 30

CE =
s l d
10 20 20

CT =
a m
15 10

CA =
y n
10 0

Example 22 Another optimization criterion might be the time it takes to build
the car. Delay is determined by the time it takes to obtain the components and
to reserve the resources for the assembly process. For the delivery time of the
car, only the longest delay would matter. This could be modelled by the semiring
< �+,min,max,+∞, 0 >1, with the binary constraints:

C1 =

M
s m l

T a ∞ 3 4
m 2 4 ∞

C2 =

M
s m l

s 2 3 ∞
E l 30 3 3

d 2 3 ∞

C3 =

E
s l d

A y 5 4 7
n 0 30 0

C4 =

E
s l d

T a ∞ 3 ∞
m 4 10 3

and unary constraints CM , CE , CT and CA that model the time to obtain the
components:

CM =
s m l
2 3 3

CE =
s l d
3 2 3

CT =
a m
1 2

CA =
y n
3 0

Let us now consider the variable E of Example 3.5 and compute δ
/αNS/NI

between its values by using Definition 3.4 and Definition 3.6. In Fig. 3.3 directed
arcs are added when the source can be δ/αsubstituted to the destination node. It
is easy to see how the occurrences of δ/αNS change, depending on δ and α degrees.

We can notice that when δ takes value 0 (the 1 of the optimization semiring),
small degradation is allowed in the CSP tuples when the values are substituted;
thus only value s can be substituted for value d. As δ increases in value (or de-
creases from the semiring point of view) higher degradation of the solutions is
allowed and thus the number of substitutable values increase with it.

1This semiring and the fuzzy one are similar, but the first uses an opposite order. Let us call
this semiring opposite–fuzzy.
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s l s s sl l l

s s s sl l l l

d d d d

d d d d

α = 0 
β

α = 4 α = 5 
Ν β

α =  

δ = 0 δ = 7 δ = 30 δ =  

Figure 3.3: Example of how δ–substitutability and α–substitutability varies in the
opposite–fuzzy CSP over the values of variable E.

In the second part of Fig. 3.3 we can see that for α = 0 all the values are in-
terchangeable (in fact, since there are no solutions better than α = 0, by definition
all the elements are αinterchangeable).

For a certain threshold (α = 4) values s and d are αinterchangeable and value
l can substitute values s and d. Moreover, when α is greater than 5 we only have
that s can substitute d.

Further we consider the same variable E of the Example 3.5 for fuzzy CSP
case and compute α−setNS/NI by using the definition Definition 3.6. In Fig. 3.7,
we can see how the occurrence of α−setNS varies depending on the threshold α.

α = 0 

s l

d

α    ⎯(0, 4] 

s l

d

α    [5, 29] 

s l

d

α    [30,       )  α =  

s l

d

s l

d

Figure 3.4: Example of how α−set–substitutability varies in the opposite–fuzzy
CSP over the values of variable E from Fig. 3.2.

When α takes value 0 or ∞ all the values of variable E are
α−setinterchangeable. When value of alpha varies between value 0 and 4 value s is
α−setinterchangeable with values l and d, where only d can be α−setsubstitutable
for value l. For an α higher then 4 and up to 29 we can interchange only values s
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and d, while for an α above 30 we can substitute also value l for s and d as well.
Fig. 3.5 shows how occurrence of δ/αsubstitutability among values of variable

E change w.r.t. δ and α for Example 3.5. We can see that when δ takes high values
of the semiring, small degradation in the solution is allowed. Thus for δ = 0 only
s can substitute d. As δ decreases in the values of the semiring, here goes to ∞,
there is more degradation allowed in the solution and thus more δsubstitutability
among the values of the variable E.

s s s s

s s s s

δ = 0 δ = 73

α = 18 
Ν β

δ = 15 δ = 

α = 0  
Ν β

α = 30 
30β

α =  
Ν β

l l l l

l l l l

d d d d

d d d d

Figure 3.5: Example of how δ–substitutability and α–substitutability varies in the
weighted CSP over the values of variable E from Fig. 3.2.

Let’s now consider the second part of Fig. 3.5. For high semiring values of α
all the values are interchangeable. For α = 18 d and l are interchangeable, and s
can substitute l and d.

Notice that thresholds α and degradation δ are two different notions of ap-
proximations and compute different notions of interchangeability. As an example,
by using degradation δ = 15 we obtain s and d interchangeable, whilst, by using
threshold α = 18 we obtain l and d interchangeable.

In Fig. 3.6 we represent the variance of α−setNS depending on the threshold α
for weighted CSP example. For α with values between 0 and 17 or ∞ all the values
are α−setinterchangeable. The number of α−setsubstitutable values is decreasing
with α till when α = 36 and increasing again after all. It is interesting to notice
that for this example that value s is always α−setsubstitutable with value d; value
l is α−setsubstitutable to value s until α reaches value 28, while for value of α
higher than 90, value l becomes α−setsubstitutable for value s.

We will show now how to compute interchangeable values by using the Dis-
crimination Tree algorithm. In Fig. 3.7 the Discrimination Tree is described for
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Figure 3.6: Example of how α−set–substitutability varies in the weighted CSP
over the values of variable E from Fig. 3.2.

variable M when α = 2 and α = 3. We can see that values m and l for variable
M are 2interchangeable whilst there are no interchangeabilities for α = 3 .

3.6 Experimental results

Occurrence of NI in classical CSP have been already studied to improve search [5],
for resource allocation application [25] and for configuration problems [68]. One
of the main result is that in problems of small density the number of NI sets
increases with the domain size.

The behavior of NI sets in the Soft CSP frameworks is still unexploited.
For this motivation we study and evaluate here how NI behaves in the Soft CSP
framework.

We have done our experiments for fuzzy and weighted CSP representing the
important class of Soft CSPs dealing with an idempotent and non–idempotent
times operation respectively. The motivation for considering both classes come
from the fact that solving Soft CSP when the combination operation is not idem-
potent is extremely hard [14].

Usually the structure of a problem is characterized by four parameters:
• Problem Size: This is usually the number of its variables;
• Domain Size: The average of the cardinality of the domain of the variables;
• Problem Density: This value (measured on the interval [0,1]) is the ratio of the

number of constraints relatively to the minimum and maximum number of
allowed constraints in the given problem; Considering the constraint problem
as a constraint graph G = (V,E) where V represents the vertices (variables)
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Figure 3.7: Example of a search of α–interchangeability computing by the use of
discrimination trees.

(with n := |V |) and E edges (constraints) (with e := |E|); the density is
computed as denscsp = e−e min

e max−e min , where e min = n − 1 and e max =
n(n−1)

2 ;
• Problem tightness: This measure is obtained as the average of tightness of

all the constraints. Since we will consider in the following fuzzy CSPs and
weighted CSPs mapped on the interval [0, 1], we compute tightness as the
ratio between the sum of the semiring values associated to all the tuples in all
the constraints, and the number of all possible tuple. A different, less precise
but more general, way to compute tightness in Soft CSPs have been used
in [78] as the ratio among the number of tuple with assigned semiring level
greater than 0 and the number of all possible tuples.

3.6.1 δ/αNI

For both fuzzy and weighted CSPs we observed that the density and number
of variables do not influence too much the occurrence of interchangeable values.
There is instead a (weak) dependency from the domain size: the number of inter-
changeable values increases with the resources. This result from the test is obvious
when dealing with crisp CSPs, but for soft problems this could be not so obvious.

We followed the model of measuring NI sets developed in [25] with some
adaptation needed in order to deal with soft constraints. We report here the re-
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Figure 3.8: A statistical measure the number of NI of α interchangeability for
Fuzzy CSP (with uniform weight distribution), for sets of problems with 10 vari-
ables and 10 values domains, on the left side of the figure, varying with α and
similarly for δ.

sults for problem sizes n = 10 and n = 20, while varying the density dens− csp ∈
{0.1, 0.2, . . . , 1} and the maximum domain size dom − size = { n

10 , 2n
10 , . . . , 9n

10 , n}.
For each case, 10 random problems were generated and then graphically repre-
sented by considering the measures described below.

In all the graphs we highlight where is the position of the optimal solution.
In fact, when dealing with crisp CSPs there is not any notion of optimality, but
for soft CSPs each solution has an associated level of preference. It is important
to study NI occurrence around optimal solutions because we are often interested
to discard solutions of bad quality.

Fuzzy CSP

Informally, for fuzzy CSPs the weights assigned to the tuples represents how much
the tuple is satisfied. The semiring operations are for combination the min and for
projection the max.

Let us define measureαNI as the ‘occurrence’ of NI αinterchangeable value
pairs. It computes the average number of αNI interchangeable pairs values over
the whole CSP divided by the potential number of relations using the formula:

measureαNI =

∑n
k=1

αNIVk∗2
domSizeVk

∗(domSizeVk
−1)

n
,

where n represents the problem size and αNI Vk all the αinterchangeable pairs
values for variable Vk.

In Figure 3.8, we represent measureαNI, thus as said before the NI occur-
rence, for different values of α. It has been notice that around optimal solution
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Figure 3.9: A statistical measure the number of α interchangeability for Fuzzy
CSP (with uniform weight distribution), for sets of problems with 10 variables
and 10 values domains, on the left side of the figure, varying with α and problem
tightness, similarly for δ.

the number of αinterchangeable values is high and it decreases with α. During the
experiments, it has been noticed a weak dependence on the density of the CSP
and that αNI interchangeable values that increases with the number of resources.

Let us define measureδNI as the ‘occurrence’ of NI δinterchangeable value
pairs. It computes the average number of δNI interchangeable value pairs over the
whole CSP divided by the potential number of relations using the formula:

measureδNI =

∑n
k=1

δNIVk∗2
domSizeVk

∗(domSizeVk
−1)

n
,

where n represents the problem size and δNIVk all the δinterchangeable pairs
values for variable Vk.

In Figure 3.8, we see that around the optimal solution the occurrence of
δNI interchangeable values do not depend on δ which varies around the optimal
solution. It depends as in α case slightly on the density of the CSP and increases
as well with the number of resources.

In Figure 3.9, we represent how the occurrence of (δ/α)interchangeability
depends on α and δ, respectively and also on the problem tightness.

As we can see in the Figure 3.9, the number of α interchangeable values
depend on α, but also on the problem tightness. For low tightness, the number
increases faster with the values of α, while for higher values of tightness inter-
changeable values appear only for high values of alpha.

On the right side of the Figure 3.9, we have the dependence on δ and prob-
lem tightness. There, interchangeable values occurrence increases fast with the
tightness for low δ values, while for high delta values it appears only for high
tightness.
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Figure 3.10: A statistical measure the number of α interchangeability for Fuzzy
CSP (with uniform weight distribution), for sets of problems with 10 variables
and 10 values domains, on the left side of the figure, varying with α and problem
density, similarly for δ.

In the Figure 3.10, we represent how the occurrence of (δ/α)interchangeability
depends on α and δ, respectively and also on the problem density. We can notice
that the interchangeability occurrence does not vary with the problem density and
it varies in the same way with α and δ as before.

Weighted CSPs

In the following we present how the occurrence of δ neighborhood interchangeable
values varies with δ. The tests are not done for α as well as the semiring of weighted
CSPs is not idempotent and thus α neighborhood interchangeable values cannot
be computed.

In Figure 3.11 (a), we see how the number of δ neighborhood interchangeable
increases with δ and that around optimal solution approaches to 1. This means
that all the values pairs are interchangeable for high δ.

In Figure 3.11 (b), we represent how the measure of NI varies with δ and
the CSP density as well. We can see as in the fuzzy case that the CSP density
does not influence the occurrence of interchangeability.

3.6.2 NI versus FI

Computing full interchangeable values might be a quite costly operation as it
may require computing all the solutions. There are not known efficient algorithms
which can compute in polynomial time full interchangeable values. A localized but
stronger condition than full interchangeability, called neighborhood interchange-
ability, can be computed in polynomial time.
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Figure 3.11: (a) The figure represents how δ NI values are varying with δ, for
weighted CSPs (b) The figure represents how δNI values are varying w.r.t. δ and
the CSP density, for weighted CSPs.

Fuzzy CSP

We proposed in [9, 10] an extension of the algorithm introduced by Freuder [42]
able to compute neighborhood interchangeability for soft CSPs. We also extended
to soft CSPs the property that δ/αNI approximate δ/αFI.

Since NI is a subset of FI, it is important to know the ratio between the num-
ber of neighborhood interchangeable values and the number of full interchangeable
values.

We consider in the tests randomly generated problems of size 10 with maxi-
mum domain size of 10 values at different densities, following the same model as
described above.

We present here only the results for δNI interchangeability,

ratioNIFI =
∑n

k=1 δNIVk∑n
k=1 δFIVk

,

where δNIVk represents the number of δNI interchangeable values pairs for
variable Vk and δFIVk represents the number of δFI interchangeable values pairs
for variable Vk.

In Figures 3.12 we see that the ratio is between 0.7 and 0.9 around optimal
solution for fuzzy CSP . Thus, NI interchangeability can well approximate FI
interchangeability.

Weighted CSPs

In Figure 3.13 (a) we can see how the number of δ neighborhood interchangeable
values versus δ full interchangeable varies with δ. The number of interchangeable
values found by applying the neighborhood interchangeability definition is close
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Figure 3.12: The ratio between the number of α neighborhood interchangeable
values and α full interchangeable and its dependence on α, on the left side of the
picture, for problems of 10 variables with 10 values domains and various values
for density and tightness; similarly, we study the behavior for δ, on the right side
of the figure.(a) Fuzzy CSPs versus α. (b) Fuzzy CSP versus δ.

to full interchangeability values number. Thus, we can again approximate full
interchangeability with neighborhood algorithm.

Using the same procedure as in Fuzzy CSPs we computed the occurrence
of neighborhood interchangeability relative to full interchangeability on randomly
generated problems of size 10 with maximum domain size of 10 values at different
densities, following the same model as described above.

We present here only the results for δNI interchangeability.

ratioNIFI =
∑n

k=1 δNIVk∑n
k=1 δFIVk

,

where δNIVk represents the number of δNI interchangeable values pairs for
variable Vk and δFIVk represents the number of δFI interchangeable values pairs
for variable Vk.

In Figure 3.13 (b), we represent how the ratio between δNI and δFI varies
with delta and CSP density. We can see that the ratio is between 0.8 and 1 and
this lead us to the conclusion that neighborhood interchangeability can approx-
imate fairly full interchangeability for weighted CSP when we allow a solution
degradation with δ.

3.6.3 NI versus Approximated NI Computed by the
DT Algorithm (Only for Fuzzy CSPs)

When the times is idempotent we can use the DT algorithm to compute an ap-
proximation of the interchangeability. In this section we compare the number of
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Figure 3.13: (a) The figure represents how δ NI versus δ FI values are varying
with δ for weighted CSPs. (b) The figure represents how ratio δ NI/ δ FI is
varying with δ and CSP density for weighted CSPs.

interchangeability in a Fuzzy CSP , with the amount of interchangeable values
computed by the DT algorithm.

In Figure 3.14, we can see in the left side of the figure how the number
of α full interchangeable values, α neighborhood interchangeable computed using
the definition algorithm and discrimination tree algorithm respectively are varying
with the values of alpha. We can see that the general algorithm for computing
α neighborhood interchangeable finds a close number of interchangeable values to
full interchangeable ones.

The Discrimination Tree algorithm finds also a close number of interchange-
able values to ones found by the definition algorithm.

For δ interchangeability we can see the results in the right side of the Fig-
ure 3.14. We can see that the graphs almost overlaps. Thus the number of inter-
changeability values found for δ neighbourhood/full interchangeability is almost
the same. Thus, in δ case our method approximates even more full interchange-
ability.

Following these results we can get to conclusion that full interchangeability
in fuzzy CSPs can be well approximates by neighborhood approximation based
on the definition algorithm and the Discrimination Tree algorithm respectively.

3.7 Partial Interchangeability

As defined in 2.3.2, partial interchangeability is a weaker form of interchangeability
then full and respectively neighborhood interchangeability. Thus, two values of
a CSP variable are partial interchangeable when by interchanging them some
variables might differ but the rest of the CSP is not affected.
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Figure 3.14: The figure represents how α NI, α FI, α NIDT values are varying
with α, on the left side of the figure. The same for δ in the right side.

In this section we define this form of partial interchangeability and give al-
gorithms for computing it. Further, we had explored its occurrence depending on
the CSP parameters and the allowed threshold, α, of degradation, δ.

3.7.1 Definitions

Similar to Freuder [42] we define here some notions of substitutability/interchange-
ability that consider more than one variable and that extend our previous work
in [9, 10]. In the following definitions we admit to change the value of the vari-
able v together with some other neighborhood variables to obtain a notion of Full
Partial Substitutability (FPS).

Definition 3.9 (Full Partial Substitutability (FPS )) Consider two domain values b
and a, for a variable v, and the set of constraint C; consider also a set of variable
V1 ∈ V . We say that b is partially substitutable for a on v with respect to a set
of variables V1 (b ∈ FPSV1

v (a)) if and only if for all assignment η there exists
η′, η′′ : V1 → D s.t. ⊗

Cη[η′][v := a] ≤S

⊗
Cη[η′′][v := b]

Similarly all the notion of δ/α/α−setNeighborhood Partial Substitutability
(δ/α/α−setNPS ) and of δ

/α/α−setFull/Neighborhood Partial Interchangeability
(δ

/α/α−setFPI /NPI ) can be defined (just considering the relation in both direc-
tions and changing C with Cv).

Definition 3.10 (δNeighborhood Partial Substitutability (δNPS )) Consider two
domain values b and a, for a variable v, and the set of constraint Cv involving
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v; consider also a set of variable V1 ∈ V . We say that b is δNeighborhood Partial
Substitutable for a on v with respect to a set of variables V1 (b ∈ δ

FPSV1
v (a)) if

and only if for all assignment η there exists η′, η′′ : V1 → D s.t.⊗
Cvη[η′][v := a] × δ ≤S

⊗
Cvη[η′′][v := b]

Definition 3.11 (αNeighborhood Partial Substitutability (αNPS )) Consider two
domain values b and a, for a variable v, and the set of constraint Cv involving
v; consider also a set of variable V1 ∈ V . We say that b is αNeighborhood Partial
Substitutable for a on v with respect to a set of variables V1 (b ∈ αFPSV1

v (a)) if
and only if for all assignment η there exists η′, η′′ : V1 → D s.t.⊗

Cvη[η′][v := a] ≥S α =⇒ (
⊗

Cvη[η′][v := a] ≤S

⊗
Cvη[η′′][v := b])

Definition 3.12 (α−setNeighborhood Partial Substitutability (α−setNPS )) Con-
sider two domain values b and a, for a variable v, and the set of con-
straint C; consider also a set of variable V1 ∈ V . We say that b is
α−setNeighborhood Partial Substitutable for a on v with respect to a set of vari-
ables V1 (b ∈ α−setFPSV1

v (a)) if and only if for all assignment η there exists
η′, η′′ : V1 → D s.t.⊗

Cvη[η′][v := a] ≥S α =⇒
⊗

Cvη[η′′][v := b] ≥S α

Let’s apply the definition of NPI to our running example in Fig. 3.1 in Sec-
tion 3.2, by projecting over variable x. It is easy to see that a and c are Neighbor-
hood Partial Interchangeable. In fact they have assigned both the semiring level
0.2. We have also that a, b and c are 0.15NPI and 0.1−setNPI .

The next theorem shows how NI is related to NPI . As we can imagine,
interchangeability implies partial interchangeability.

Theorem 3.12
Consider two domain values b and a, for a variable v, and the set of constraint C
involving v; consider also a set of variable V1 ∈ V and its complement V̄1 = V −V1.
Then,

NI v(a/b) =⇒ NPI V1
v (a/b).

Proof. It is enough to show that b ∈ NS v(a) =⇒ b ∈ NPI V1
v (a) (the results for

interchangeability easily follows from substitutability). By definition

b ∈ NSv(a) ⇐⇒
⊗

Cvη[v := a] ≥S

⊗
Cvη[v := b].

It is enough to take η′ = η′′ = ∅, to easily have⊗
Cη[η′][v := a] ≤S

⊗
Cη[η′′][v := b]. �

Similar results follow for the degradation and the threshold notion of partial
interchangeability.
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Figure 3.15: The figure represents how average number of NPI sets per variable
is varying with α, figure (a), respectively δ, figure (b) and CSP density in Fuzzy
CSPs.

3.7.2 Estimation of NPI occurrence

Further, we make experiments in order to estimate the occurrence of partial in-
terchangeability in soft CSPs.

The following results were obtained on random generated Fuzzy CSPs, con-
taining 10 variables and with domain sizes of 5 values. We consider a random
CSP tightness and we are concerned by now only how the occurrence of partial
interchangeability varies with the density of the CSP and either with the allowed
threshold, α or degradation, δ.

The experiments were conducted in the following way. For each density in
the set {0.1, 0.3, . . . , 0.9}, we vary either α or δ between 0.1 and 0.9 and generate
20 random problem. For every values pair of each variable we compute if NPI set
is existent.

In Figure 3.15, we represent how the average number of NPI sets per vari-
able varies with the CSP density and with the threshold α, Figure 3.15 (a), or
degradation δ, Figure 3.15 (b).

We can see that the number of the occurrence of NPI sets depends insignif-
icantly on the density but varies strongly with the threshold or degradation. We
remark that contrary to NI values the average number of NPI sets depends in
the same way on α and δ. While, for high threshold/degradation, meaning small
values of α/δ, we have high occurrence up to 4.5 average number of NPI sets per
variable; this occurrence decreases for low threshold/degradation, high values of
α/δ.

Next, we had measured the average size of the NPI set depending on the
same parameters. As in Figure 3.16, we see that the average size stays between
0.5 and 3 number of variables in a NPI set. While decreasing with high values of
the threshold α the size of NPI set does not depend much on the degradation δ,



92 Chapter 3. Interchangeability in Soft CSPs

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9 0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

3.5

4

density

alpha

A
ve

ra
ge

 N
P

I s
et

 s
iz

e 
pe

r 
va

ria
bl

e

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

10.5

1

1.5

2

2.5

3

3.5

4

density

delta
A

ve
ra

ge
 N

P
I s

et
 s

iz
e 

pe
r 

va
ria

bl
e

(a) (b)

Figure 3.16: The figure represents how the average size of NPI set is varying with
α, figure (a), respectively δ, figure (b) and CSP density for Fuzzy CSPs.
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Figure 3.17: The figure represents how the average size of NPI set is varying with
α, figure (a), respectively δ, figure (b) and CSP density for Fuzzy CSPs.
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see Figure 3.16 (a) and (b) respectively. It increases with the CSP density.
In Figure 3.17, we measure the average number of NPI values pairs per

variable normalized to the variable domain size. We can see that the number
of NPI pairs do not depend on the density, but increases with the threshold α
and decreases with degradation δ. We found that there are more values NPI

αinterchangeable then δinterchangeable.

3.8 Conclusion

Interchangeability in CSPs has found many applications for problem abstraction
and solution adaptation. We have shown how the concept can be extended to soft
CSPs in a way that maintains the attractive properties already known for hard
constraints.

The two parameters α and δ allow us to express a wide range of practical
situations. The threshold α is used to eliminate distinctions that would not inter-
est us anyway, while the allowed degradation δ specifies how precisely we want to
optimize our solution. We have shown a range of useful properties of these inter-
changeability concepts that should be useful for applying them in similar ways as
interchangeability for hard constraints.

In fact, interchangeability may be practically more useful for soft constraints
as it could be used to reduce the complexity of an optimization problem, which is
often much harder to solve than a crisp constraint satisfaction problem. Further-
more, in the case of soft interchangeability it is possible to tune the parameters
α and δ to create the levels of interchangeability that are required for the desired
application.



Chapter 4

Multi Agent Computation of
Interchangeability in
Distributed CSPs

4.1 Introduction

Many distributed problems and applications such as planning, scheduling, resource
allocation, configuration, etc., can be represented as distributed constraint satis-
faction problems, in which the variables and constraints are distributed among
distinct communicating agents. In this case, distribution of computation (in the
form of distinct software agents) is adopted as a means to engineer a solution in
a more effective way, and agents are usually assumed to be cooperative.

In this chapter we argue that interchangeability can be computed in non
centralized/distributed environments, namely Distributed Constraint Satisfaction
Problems based on collaborative multi agents systems. We show that multiple
agents can collaborate to solve neighborhood and partial interchangeability in
distributed constraint satisfaction problems.

When the CSP problem knowledge is distributed among multiple agents,
there are few aspects which need to be considered: how computation tasks can
be usefully divided among agents, how each agent can exploit the information
provided by the other agents and how the agents can communicate in an effective
way. All these issues are addressed in this chapter as follows.

4.2 Background

Due to advances in hardware and networking technologies, information is often
decentralized and spread in different locations. Multi agent systems prove to be an
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appropriate framework in the development of parallelism in computation because
of their intrinsic distributed nature and the distribution of processes and tasks
among agents. In such systems, a number of agents share the work required to
solve computational problems.

There are multiple problem classes in AI that have been addressed by search
algorithms computed by collaborative multiple agents and one of them are the
constraint satisfaction problems. Cooperative distributed solving is an AI domain
for which a general framework was proposed by Lesser in [60], and is concerned
with how a set of artificial intelligent agents collaborate and work together to solve
problems.

Many AI problems as planning, scheduling, resource allocation, configuration,
etc., for which constraint satisfaction problems modeling proved to be appropriate,
are naturally distributed or were originally centralized but distribution is expected
to help with their resolution. All of these problems have a distributed represen-
tation based on distributed constraint satisfaction problems (DCSPs) as showed
in [52], [72] and [109]. A formalization of the DCSPs framework and a survey on
its algorithms were given by Yokoo and Durfee in [105].

Further, applications of multi agent systems where agents collaborate for dis-
tributed problem solving arise in fields such as sensor networks [67] [73], distributed
and reconfigurable robots [85], multi agent teamwork [89], resource allocation [46]
and human–agent organizations [23].

There is significant work in distributed constraint satisfaction for formaliza-
tion and search algorithms ([109], [110], [86]). A Distributed Constraint Satisfac-
tion Problem (DCSP ) is defined/formalized as a constraint satisfaction problem
in which variables and constraints are distributed among multiple agents [107].

There are two main groups of algorithms proposed this far in distributed
constraint satisfaction problems: search algorithms and consistency algorithms.
Besides consistency and search algorithms, in this work we study search algorithms
for value symmetries, so called interchangeable.

In the following, we give an overview of the algorithms proposed for solving
DCSPs.

The straightforward and trivial, but wasteful and unpractical, algorithm for
solving DCSPs is the centralized backtracking. The main idea of the algorithm
is to select a leader agent which collects all the information about the variables,
their domains and constraints, from all the other agents and then performs the
solving of the CSP with standard centralized CSPs methods. This algorithm is
not feasible because of communication overhead between agents, wasteful because
it does not take advantage of the parallelism as only the leader agent performs the
computation and sometimes also not possible due to data privacy which involved
agents might request.

To overcome the centralization of this computation the synchronous back-
tracking algorithm has been proposed. The algorithm assumes that the agents will
make an agreement on the order in which they contribute to solving the CSP . The
algorithm works as follows: each agent receives a partial solution from the previ-
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ous agents and instantiates its variables such as to resolve its constraints in terms
of variables held by previous agents. If the agent cannot locate satisfying values
for its variables, it sends backtrack messages to the previous agents. Otherwise
the search passes the partial solution onto other agents. This solution for solving
DCSPs reduces the communication overhead, but it does not take advantage of
distribution as only one agent at a time is performing calculations. A variation
of synchronous backtracking, called network consistency protocol, was proposed
in [30]. In this algorithm the agents construct a depth–first search tree and act
synchronously by passing the computation right. In this case agents with the same
parent in the tree can act concurrently.

Further studies have found algorithms which reduce the communication over-
head and take advantage of agent parallelism. For reaching these goals the com-
putation has to be asynchronous. For asynchronous backtracking (ABT ) some so-
lutions have been proposed by the research community. In [105], an asynchronous
backtracking algorithm is proposed. In this algorithm agents run concurrently and
asynchronously gaining computation time and power over the synchronous algo-
rithms. So, there are two types of agents: value sending agents and constraint
evaluating agents. Each agent instantiates its variable and communicates the vari-
able value to relevant agents. The agents are linked in a directed way, where one of
the two agents involved in the constraint/link is assigned that constraint, and re-
ceives the other agent value. The agents instantiate their values concurrently and
send their values to agents which are connected by outgoing links. The constraint
evaluation agents receive values of the value agents and verify satisfiability of the
constraints. If the constraints are not satisfied they send backtracking messages
to value agents. In [105], it is proven that this algorithm is sound and complete.

Asynchronous backtracking algorithm considers the case where access to vari-
ables is restricted to certain agents but constraints may have to be revealed. A
different approach regarding privacy is proposed in [86], [87], where constraints are
private but variables can be manipulated by any agent. This algorithm is called
asynchronous aggregation search and it differs from previous approach in that it
treats sets of partial solutions, i.e., every agent owns multiple variables that it
assigns values to, and exchanged information concerns aggregated valuations for
combinations of variables, instead of constraints. The asynchronous weak commit-
ment (AWT ) algorithm is a variation of ABT algorithm and proposes distributed
search methods based on the min–conflicts algorithm [80]: a partial solution is not
modified, but completely abandoned after a failure [104]. The AWT algorithm is
complete if all no–good messages are maintained and it is about 10 times faster
than the ABT approach. However, the explosion of no–good messages is the most
difficult part to control. To coordinate the different forms of asynchronous inter-
actions, the algorithms establish a static or a dynamic order among agents that
determines the cooperation patterns between agents. Nishibe et al. [71] discuss and
evaluate asynchronous backtracking with different ordering schemes: value order-
ing, variable ordering and value/variable ordering. In particular, they apply these
techniques to the communication path assignment in communication networks.
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Other algorithms inspired from centralized CSPs have been further adapted
for distributed environments such as: distributed consistency algorithm in [109],
distributed breakout algorithm for DCSPs in [108] and distributed partial con-
straint satisfaction in [52].

When CSP problems have to model not only dependencies between vari-
ables values but also preferences, cost or probabilities over variables values as-
signments, we deal with constraint problems optimization. These problems proved
to need specific algorithms for their resolution which take into consideration the
preference, cost or probability optimization. A straightforward extension of asyn-
chronous backtracking algorithm to distributed constraint optimization problems
(DCOPs), was proposed in [51] and relies on converting an optimization problem
into a sequence of DCSPs using iterative thresholds. But this algorithm applies
only to limited types of optimization problems and has failed to apply to more
general DCOPs and even rather natural ones as minimizing the total number of
constraint violations (MaxCSPs). Another synchronous solution has been pro-
posed in [52]. As it requires synchronous, sequential communication it tends to
be too slow. Other fast, asynchronous solutions, based on local search have been
proposed in [52] and [110], but they cannot provide guarantees on the quality of
solution. A polynomial–space algorithm for DCOP named Adopt is guaranteed to
find the globally optimal solution while allowing agents to execute asynchronously
and in parallel, see [67].

4.3 Interchangeability in Distributed CSPs

In this section, we propose polynomial algorithms for computing different forms
of interchangeability in a distributed environment.

In the first part we describe the distributed CSP formalism we have used,
next we present a distributed algorithm for neighborhood interchangeability,
namely distributed neighborhood interchangeability. Further, we give algorithms
for computing partial interchangeability, which we formally call distributed neigh-
borhood partial interchangeability.

4.3.1 Distributed CSPs definitions

A distributed CSP is a constraint satisfaction problem (CSP ) in which variables
and constraints are distributed among multiple automated agents. The aim is to
find a consistent assignment of values to variables which satisfy all the constraints
and are allowed by the agents.

Distributed CSPs

In a distributed CSP all the information about the problem, i.e. variables, val-
ues and constraints, is distributed among agents. We consider the same DCSP
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formalism as in [107]. Therefore we make the following assumptions about the
communication properties between collaborative agents:

• Agents communicate through messages. An agent can send messages to other
agent iff it knows its address.

• The delay in delivering a message is finite and for the transmission between
any pair of agents, messages are received in the order they were sent.

A generic model would be that each agent has some variables and tries to
determine their values by satisfying the constraints between them. On the other
hand, there are constraints between agents, interagent constraints, and the value
assignment must satisfy these constraints as well. Thus, the agents have to estab-
lish the values that their variables take by exchanging messages and agreeing with
the other agents. We recall the CSP formalism can be expressed as: n variables
x1, x2, . . . , xn, whose values are taken from finite, discrete domains D1, D2, . . . ,
Dn, respectively, and a set of constraints on their values which here are expressed
as predicates pk(xk1, . . . , xkj). Formally there exists m agents and each variable
xj belongs to one agent i: this relation is represented as belongs(xj , i), see [107].
Constraints are distributed among agents as well. The fact that agent l knows a
constraint predicate pk is represented as known(pk, l). As in [107], the DCSP is
solved iff the following condition is satisfied:

• ∀ i, ∀ xj where belongs(xj , i), the value of xj is assigned to dj , and ∀ l, ∀ pk

where known(pk, l), pk is true under the assignment xj = dj .

In our study, we make the following assumptions.

• Each agent has exactly one variable.

• All constraints are binary.

• Each agent knows all constraints relevant to its variable.

We believe that these assumptions are without loss of generality as they can
be relaxed in a straightforward manner to general cases, where multiple variables
are assigned to one agent and constraints are not only binary.

In the algorithms description we use the same identifier xi for the agent and
its variable.

4.3.2 Neighborhood Interchangeability Algorithm

The centralized algorithm for computing neighborhood interchangeable values was
proposed by Freuder in [41], see Chapter 2, Section 2.2. This is a constructive
algorithm and is computable in polynomial time. In the following, we propose the
computation of this algorithm in a distributed environment.

Our algorithm takes advantage of the distributed environment and distributes
the computational effort among the neighbor agents.
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We consider a distributed CSP as described above, in which all constraints
are binary, the variables are the nodes and constraints are the links between the
nodes. Since each agent has exactly one variable, a node is also an agent.

We consider two types of agents: the critical agent who wants to interchange
its values and its neighbor agents to which the critical agent is connected by
constraints.

Definition 4.1 (Simplified Discrimination Tree) A simplified DT is a DT where we
consider in the branches only the assignments of a restricted number of neighboring
variables but not all.

The simplified DT is constructed in neighbor agents for the values to inter-
change received from the critical agent and relative to their own variables.

The distributed neighborhood algorithm contains the following steps:

1. the critical agent sends messages to all its neighbor agents with the two values
he wants to interchange.

2. each neighbor agent confirms upon reception and then computes a simplified
discrimination tree for the values to interchange with the critical agent.

3. the neighbor agents send messages to the critical agent with the results ob-
tained in the simplified DT they constructed. These messages specify if the
values to interchange with the critical agent are in the same branch annota-
tion or they reach different branch annotations.

4. the critical agent analyzes the answers received from neighbor agents and if
for all neighbor agents the interchangeable values are in the annotation of
the same branch then they are interchangeable. Otherwise, if for at least one
neighbor agent the values are not in the same branch annotation they are
not interchangeable.

The algorithm can be straightforwardly extended to receive as input a sub-
domain of values of the critical variable instead pairs of values to be interchanged.

We consider two kind of messages for the communication between the coop-
erative agents:

• REQUEST1 message – the critical agent sends messages of type REQUEST
to all its neighbor agents. The message contains the two values to interchange,
i.e. ‘NIInterchangeable xi1 xi2 ?’.

• INFORM messages –

– the neighbor agents first confirm reception of the request by the use of
an INFORM1 message.

– then, each of them computes the simplified DT for the received val-
ues to interchange from the critical agent and answer with messages of
INFORM2 type. The messages are of two types: ‘NIInterchangeable xi1
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xi2 YES’ when the values are at the end of the same branch, meaning
NI relatively to the current neighbor assignments, or ‘NIInterchangeable

xi1 xi2 NO’ when they are not.

In the following we give the procedures for the critical agent:
procedure sendNI(NIinterch?, Xi, xi1, xi2)

1: for each neighboring agent Xj do
2: send REQUEST1 message NIinterch? for values xi1, xi2

procedure checkNI(xi1, xi2)

1: if INFORM2 is a Y ESinterch for all neighboring agents then
2: return xi1, xi2 are NI.
3: else
4: return xi1, xi2 are not NI.

The neighbor agents are responding based on the following procedures:
procedure receivedNI(NIinterch?, Xi, xi1, xi2)

1: send INFORM1 to Xi received NIinterch?, Xi, xi1, xi2

2: interch = simplifiedDT (Xi, xi1, xi2)
3: if interch = true then
4: send INFORM2 Y ESinterch to the critical agent
5: else
6: send INFORM2 NOinterch to the critical agent

procedure simplifiedDT (Xi, xi1, xi2)

1: for each value v ∈ {xi1, xi2} do
2: for each value xj of variable Xj consistent with v do
3: if ∃ a child node Xj = xj then
4: Move to it
5: else
6: Create node Xj = xj .

All the experimental tests are made on a JADE multi–agents platform [4].
Each time an agent wants to know if two of its values are interchangeable, it will
send a REQUEST1 message to its neighbors, by procedure sendNI . For example,
in the Figure 4.1, we have a CSP with mutual constraints distributed among
agents, where each variable is maintained by one agent and each agent knows
the constraints associated to its variable. Agent X2 wants to know if its values
v and w are interchangeable. Thus, it sends a message : ‘NIinterchangeable v w
?’, to its neighbors X1 and X3. The neighbors confirm the request, by procedure
receivedNI , and start computation of the simplified DT algorithm, procedure
simplifiedDT . After the computation they will send an INFORM2 message with
the result: if the two values reach the same DT annotation the neighbor agent will
answer ‘YES’, otherwise ‘NO’.

The critical agent, X2 in our example (see Figure 4.1) collects all the answers
from the neighbor agents and decides if the two values v and w are interchange-
able, by procedure checkNI . If all the answers are ‘YES’ then the two values are
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REQUEST: NI_intrechangeable v w ?

INFORM: Confirm demand request received

INFORM: NI intrechangeable v w YES( or NO)

Figure 4.1: An Example of Neighborhood Interchangeability Algorithm in DCSPs.

interchangeable, and if at least one answer is ‘NO’ they are not.

Soundness, completeness and complexity

In the following we discuss the soundness, completeness and complexity of Dis-
tributed NI algorithm.

Theorem 4.1
Distributed NI is sound: if it returns a pair of values I then this pair is NI for
the critical variable.
Distributed NI is also complete: if the set I is NI for critical variable Xi, then it
will find it.

Proof. We show that the distributed Neighborhood Interchangeability algorithm
always determines if the values are interchangeable or not. According to the neigh-
borhood interchangeability algorithm presented in Section 2.2, two values are NI
if they reach the same annotation in the Discrimination Tree. In the distributed
NI algorithm, the computation of the DT is distributed among agents, but the
unification of the answers in critical agents implies identical results, annotation as
in a centralized discrimination tree. Thus, as the distributed NI algorithm returns
the same results as its centralized version, it is sound.

Furthermore, based on the assumption that all the messages between agents
are always received and that unification of answers in the critical agent gives the
same results as in centralized version, the distributed NI algorithm always finds
the result (interchangeable or not) and thus, is complete. �
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Complexity

The complexity of the algorithm as in Freuder [41] is O(n2d2), where n is the
number of the CSP variables and d the maximal domain size. When the algorithm
computes all the NI interchangeable values for the whole CSP and all possible
value pairs to interchange the complexity is O(n2 · d3), where n is the number of
CSP variables and d the maximum size of their domain. When the computation
purpose is limited to a specific variable and its values to interchange pair of values
of a certain variable which one might want to interchange, the complexity for the
worst case is to O(n · d).

4.3.3 Minimal Dependent Set Algorithm

In this section, we study algorithms for computing weaker forms of interchange-
ability, partial interchangeability, in distributed CSPs. As described in Chapter 2,
Section 2.2, partial interchangeability captures the idea that values for a set of vari-
ables may change among themselves, but be fully interchangeable with respect to
the rest of the world.

We have developed algorithms for computing a minimal partial interchange-
able sets, which we called minimal dependent sets (MDS), see Chapter 2, Sec-
tion 2.5.1. Here, we present an algorithm for computing minimal dependent sets
in a DCSP .

We consider the DCSP formalism as described in the previous section where
each variable is contained in one agent. We name the agent that contains the
critical variable, critical agent. The critical agent initiates and coordinates the
search for the minimal dependent set of values to interchange, the interchangeable
set. The algorithm can be straightforwardly generalized for a subdomain of values
to interchange of the critical variable domain, and furthermore for a set of variables
with their corresponding interchangeable sets.

The distributed minimal dependent set algorithm is an incremental algorithm;
it includes gradually in the dependent set, the neighbor agents for which the values
to interchange are not in the same branch annotation. At the initial step the
dependent set contains only the critical variable. The main steps of the algorithm
are:

1. The critical agent sends messages to the neighbor agents with the values it
wants to interchange (a pair or a subdomain).

2. The neighbor agents confirm upon reception and compute the simplified dis-
crimination trees for the values to interchange of the critical variable relative
to variables they contain.

3. The critical agent collects the answers from the neighbor agents. If for all the
neighbor agents the values to interchange are in the same branch annotation
in their simplified discrimination trees then the values are neighborhood in-
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terchangeable. Otherwise, the critical agent includes in the dependent set all
the neighbors for which the values are not in the same annotation.

4. The algorithm restarts based on the same concept: the critical agent sends
messages to the neighbor agents of the obtained dependent set S. It iterates
gradually in the same manner until all the simplified DTs of the neighbor
agents contain in the critical annotation values from all variables of the de-
pendent set.

As described below, the first 3 steps of the algorithm are the same as in
the distributed neighborhood interchangeability algorithm. For their computation,
we use the same messages as described in the previous section. If the change
propagates further as in Step 4, we need to use messages which transmit also the
domains partitions of variables in the set S which reach the critical annotation in
the simplified DT computations.

Thus, in computing the minimal dependent set algorithm in DCSPs, besides
REQUEST1, INFORM1 and INFORM2 messages we need also the following
messages for inter agent communication:

• REQUEST2 message – the critical agent sends messages of type
REQUEST2 to all neighboring agents of dependent set S. The message con-
tains the two values to interchange and the dependent set S, i.e. ‘Compute
DT xi1 xi2 S’, compute simplified DT for values xi1, xi2, and the dependent
set S.

• INFORM3 message – each neighbor agent sends a message with the values
of the variables from the set S which reach the annotation of its Simplified
Discrimination Tree.

Briefly, the MDS algorithm works as follows: The critical agent initiates the
computation of a minimal dependent set by asking all its neighbors if the values
in the interchangeable set I of its variable are neighborhood interchangeable. The
neighbors for which the answer is NO are inserted in a dependent set S together
with the critical variable.

The computation continues in the same way for the obtained dependent set
S. The critical agent sends request messages to the neighbors of set S. But for this
type of communication, the critical agent needs to transmit to the neighboring
agents the dependent set S for which computation is requested. Thus it uses the
message type REQUEST2 by the use of procedure sendDependentSet, described
below. Each neighbor agent computes its simplified discrimination tree for the
dependent set S and informs back the critical agent about the domain partitions
obtained in the critical annotation for each variable in the set S. The critical
agent decides using procedure checkMinimalDependentSet and based on the answers
received from the neighbor agents, if the current set S is a MDS set or to continue
further search.

In the following we describe the two procedures which the critical agent needs
for the computation of Minimal Dependent Set (MDS).
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REQUEST_1 : NI_intrechangeable v w
INFORM_1: Confirm demand request received

INFORM_2: NI intrechangeable v w YES( or NO)
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REQUEST_2 : Compute MDS v w S ?

INFORM_3: X1 = { x, y} X4 = {x, y}

Figure 4.2: An Example of computing Minimal Dependent Set(MDS) in a DCSP .

procedure sendDependentSet(Xi, xi1, xi2, S)

1: for each neighboring agent Xj of S do
2: send REQUEST2 message ComputeDependentSet for values xi1, xi2.

procedure checkMinimalDependentSet(Xi, xi1, xi2, S)

1: collect the INFORM3 answers from the neighboring.
2: for to each neighboring agent Xj of S do
3: if ∃ an empty value set for one of the variables from the dependent set in

the neighboring agents answer then
4: include the corresponding agent in the new dependent set.
5: Iterate = true.
6: if Iterate then
7: Restart the computation from step for the new dependent set.
8: else
9: A minimal dependent set is found. Return S.

10: Return dependent set S.

In the Figure 4.2, we give an example of computing minimal dependent set in
DCSPs. The critical agent X1, sends REQUEST1 messages to all its neighbors to
demand if its values x and y are NI. Each neighbor agent computes the simplified
DT. The neighbor X4 replies NO. Further search is proceed for the dependent
set S = {X1, X4}. The critical agent X1 reiterates the computation and sends
request messages to the neighbors of set S, X2 and X3 . Neighbors X2 and X3,
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compute their simplified DT and return the domain partitions for each variable
of the dependent set S, which reach the critical annotation. Critical agent X1

makes the intersection of the domain partitions received from all the neighbor
agents and obtains the final domain partitions of the dependent set S, which are
S = {X1 = {x, y}, X4 = {x, y}}.

4.3.4 Conclusions and Further Work

In many real–world application, the centralization of data start to become un-
feasible either because of inherent distributed nature of the problem where the
information is distributed amongst different locations or because of the privacy
of data. Distributed constraint satisfaction problems developed in order to handle
these situations. In DCSP , the variables and constraints are distributed among
distinct communicative agents. For DCSP framework new algorithms has been
proposed or adapted from the centralized CSP in order adopt the distribution of
computation among distinct software agents as a mean to engineer a solution in
a more effective way. Participating agents are usually assumed to be cooperative.

In this section, we proposed algorithms for computing interchangeability in
distributed environments. We show that both forms of interchangeability, neigh-
borhood or partial, expressed through minimal dependent sets, can be computed
also in distributed environments.

The proposed algorithms concern various aspects of distributed CSP com-
putation as follows: the allocation of tasks amongst the agents, the exploitation of
information generated by the other agents in each of the agents and the efficient
communication among agents. The main goal of these algorithms is to propose so-
lution adaptation variants where as the changes are localized to one CSP variable
by distributed neighborhood interchangeability algorithms or to a set of CSP vari-
ables by minimal dependent set algorithm for DCSPs. Interchangeability methods
have been proved to improved search in centralized CSPs. Specific search algo-
rithms have been proposed to solve DCSP since their distributed characteristic
could not be handled by the centralized search algorithms. An important aspect of
further research is to evaluate how interchangeability methods can improve search
algorithms also in DCSPs. Some results regarding this aspect has already been
given by Petcu and Faltings in [73] where they show that the performance of the
distributed breakout algorithm can be improved using neighborhood interchange-
ability.

In further work the algorithm for computing minimum dependent set should
be also adapted to distributed computation. This can be done in a straightforward
manner following the same procedure as for minimal dependent set algorithm. Also
some experimental evaluation concerning the algorithms efficiency and the number
of exchanged messages between the agents on practical or random problems should
be conducted.



Chapter 5

Interchangeability in Dynamic
Environments

This part of our work studies how the algorithms for computing interchangeability
can be adapted to dynamic environments.

5.1 Motivation

Many techniques were developed to deal with static CSPs, but many reasoning
problems need to be solved in dynamic environments.

For example, in many practical applications the knowledge in the agent en-
vironment might change and evolve in time. As the knowledge in the environment
changes, the agent plans for achieving its goals might have to change according to
the last events. Thus, the agent has to adjust and adapt its plans according to the
new changes. In static environments this situation is hard to handle since all the
information about the problem to solve has to be known before the computation.
We consider the domain of knowledge which can be represented as constraint sat-
isfaction. Moreover, we consider that the knowledge about the problem is evolving
in time and we represent this as dynamic CSPs.

Moreover, much of the work for computing dynamic constraint satisfaction
problems (DynCSP ) deals with searching of solutions, but there is less work in
solution update for DynCSPs. Our work is motivated by the fact that once a
solution of the CSP has been computed, one should not spare effort to recom-
pute the solutions for the transformed CSP , which changed dynamically i.e. by
a constraint relaxation or restriction, but to reuse those already computed for
the previous CSP . On the already known solutions we can apply solution update
techniques based on interchangeability.

Solutions for previous CSP might be computed in systematic way, or local
search and also by applying solutions update techniques with interchangeability.
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We will store the previous experience in terms of known solutions or interchange-
ability computations. In the case that we have to recompute, update solutions
in the modified CSPs, we can update the old solutions by applying interchange-
ability algorithms accordingly to the new modified constraints. A faster way to
compute solutions for the transformed CSP is to consider directly the data struc-
tures which compute interchangeable values for previous CSPs; and modifying
them by considering the new constraints we can update the solutions of the old
CSP and thus, find solutions for the transformed one.

5.2 Related Work

The concept of DynCSP [33] has been introduced to handle situations where the
CSP may evolve. In crisp CSPs, solving techniques make the assumption that the
set of variables, their domains of values and the constraints between them are static
and completely known before that the search begins. In real life problems, not
always all knowledge about the problem can be known during the first phase of the
problem solving. Moreover, in real life applications the environment might evolve,
for example the set of tasks to be performed and/or their execution conditions
might change, or the user requirements might evolve or change as well, for example
in design, planning or scheduling. For handling these situations, there is a need
for specific techniques adapted to solve the DynCSPs in order to avoid to restart
the entire solving process from the beginning any time a new changes appears.

As observed in previous research works, see [33] and [6], the changes in a
DynCSP are usually gradual. The changes to the problem knowledge are evolving
slowly whereas the new changes are affecting only a small part of the problem
but not the whole. We take for example a transport scheduling problem. There is
need to configure a good schedule for truck drivers, clients and receivers. There are
constraints over clients time windows, staff and trucks availability, trucks capacity
and transportation costs. All these factors come into play when the transport
logistic company starts its operation. However, every year there are often new
staff and/or new trucks added to the traffic. These changes are all minor and it is
obvious that having new staff should not have much effect on the order allocations
to the trucks.

Due to this gradual characteristic of the DynCSPs, it is expected that there
are similarities between the CSP solutions. The changes of the solution are lo-
calized to a set of variables in the CSP without affecting the entire problem.
Some classification among the DynCSP solutions has been done by Elfe in [19] in
the domain of telecommunication services configuration. The differences between
successive assignments are characterized by costs. Elfe propose a technique which
can find a solution satisfying the new environment with minimum implementation
cost.

There are three main sets of approaches that address DynCSP problems:

• Arc Consistency (AC) – focuses on adopting arc–consistency techniques from
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static to DynCSP as proposed by Verfaillie et al in [91] and Bessière in [6].
The arc–consistency algorithms proposed for static are not appropriate in
dynamic environments. For example for constraints relaxations they are not
able to determine the set of values that must be restored in the domain.
This means that each time a constraint is added of removed from the CSP ,
all the variables need to be reset to their full domains and arc–consistency
has to be applied from scratch. Much research has been done in order to
adapt to DynCSPs methods proposed for solving static CSPs. As CSPs
are NP problems, a special attention was accorded to filtering methods such
as arc consistency which can remove local inconsistencies and thus, can re-
duce CSPs problem search space. In [6], Bessière proposed algorithms for
solving arc–consistency in DynCSPs, which are named (Dynamic AC–4).
These algorithms uses counters which are keeping truck of the number of
consistencies a value of a variable xi has in other variable xj . The values for
which the counters are 0, are removed from the domain and all the other
counters are iteratively updated.

The algorithm consists of two approaches:

– for a constraint restriction the computation of the counters is initiated
meaning that whenever there are counters with value 0, their respective
values are removed from the domain and all the other counters have to
be updated recursively;

– for a constraint relaxation, a method for counter computation is pro-
posed. This method is similar to the procedure for constraint restriction
whereas the counters are incremented instead to be decremented when-
ever a constraint is relaxed.

Improved variants of this algorithm has been further proposed by
Bessière in [7] and by Debruyne in [32].

• Constraint recording method – offers techniques that allows a DynCSP to
remember what has been discovered previously and use this knowledge to
discover assignments that satisfy the new constraint set.

In [90], van Hentenryck et al. propose methods for maintaining a so-
lution of the DynCSP once that the current solution is not valid anymore
since a new constraint is introduced. Inspired by this work, Schiex [84] pro-
posed for the first time the idea of recording previous searches in terms of
no good sets and introduced an algorithm to enhance search methods for
DynCSPs by solution maintenance approach. This algorithm uses predic-
tion techniques which can foresee whether adding or removing a constraint is
changing the part of the space that has already been checked. Furthermore,
in [91], Verfaillie and Schiex are developing this methods and propose algo-
rithms for solution reuse in DynCSPs. They propose methods for finding
new solutions by producing local changes in already known ones.
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In [35], Richards improved Schiex work based on no–goods search in
DynCSPs. A method for classifying no goods is proposed. This methods can
distinguish which which no goods are relevant for a specific search whereas
the two sets of learning are distinguish among: shallow learning and deep
learning.

• Local search – Other techniques for solving DynCSP use local search meth-
ods such as those proposed in [80], [77], [66]. Local repair methods consider
some assignment and repair it using a sequence of local modifications. Un-
fortunately, there is no guarantee that they will find the nearest solution. In
fact, Local Search may also wander off in the wrong direction, but many of
the algorithms for Local Search do not benefit from constraint propagation
to reduce the size of the search process. In [77], Roos et al. propose a lo-
cal search algorithm based on arc–consistency algorithm. Some local search
techniques have been applied also for soft constraints as in [66]. Miguel et al.
propose algorithms for solving fuzzy CSPs in dynamic environments based
on local search methods and k–consistency techniques.

In [44], Freuder and Wallace propose techniques for solving constraint
satisfaction problems partially, in particular by satisfying a maximum number
of constraints. These techniques could be also considered to be adapted for
solving CSPs in dynamic environments.

A detailed survey of the related work on DynCSPs has been given by Bastani
in [3].

5.3 Definitions

We consider as model for DynCSP the one defined by Bessière in [6].

Definition 5.1 (Dynamic CSP (DynCSP )) [Bessière 1991] A dynamic constraint
satisfaction problem (DynCSP ) ℘ is defined as a sequence of static CSPs ℘(0),
. . . , ℘(α), ℘(α+1), . . . , each resulting from a change in the preceding one.

The change can be a constraint restriction or relaxation defined as follows:

Definition 5.2 (Constraint Restriction) [Bessière 1991] A constraint restriction is
a new constraint imposed on the CSP . If we have ℘(α) = (X, dom, τ(α), R), we
will have ℘(α+1) = (X, dom, τ(α+1)), where τ(α+1) = τα + 1.

Definition 5.3 (Constraint Relaxation) [Bessière 1991] A constraint relaxation is a
constraint removed from the CSP . So, a CSP ℘(α) = (X, dom, τ(α), R) transforms
in have ℘(α+1) = (X, dom, τ(α+1)), where τ(α+1) = τα − 1.
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5.4 Algorithms

We now try to optimize the effort in computing interchangeable values in a
DynCSP . As interchangeable values might have had been computed in a previous
CSP to the current one, we try to reduce the computation of the interchangeable
values of the current CSP by considering previous gained knowledge about how
values interchange in the previous CSPs.

As it was proven in [2] that k–ary constraints can always be expressed as
binary, we consider though our work only problems with binary constraints.

For simplification we assume that we have computed all the interchangeable
values for all variables in each CSP in the sequence. For a new CSP in the
sequence, we do not have to compute the DT tree structure from scratch, but just
to modify the old ones from the previous CSP in the sequence.

In a second approach, we consider that not every variable of each CSP
in the sequence has had it‘s interchangeable values computed. When we have
a new CSP in the sequence and an interchangeability computation demand for
one of its variables, we look for the closest CSP in the sequence which has the
interchangeability values computed for the corresponding variable. The two CSPs
might differ with a number of constraints between 0 and the distance between
them.

5.4.1 NI Algorithm for Constraint Restriction

Constraint restriction in a CSP considers imposing a new constraint. Imposing a
new constraint in a binary CSP affects 2 variables of the current CSP 1. So we
have to reconsider the computation of the interchangeable values involved by the
new constraint.

Constraint restriction prevents the occurrence of neighborhood interchange-
ability but might induce partial interchangeability. Choueiry et al. [25] and Benson
and Freuder [5] find that there is high occurrence of neighborhood interchange-
ability up to a CSP density of 0.4. In Chapter 2, Section 2.5.1 we show that for
high CSP densities there is high occurrence of partial interchangeability.

Constraint restriction in a DynCSP holds the following property:

Property 5.1
Constraint restriction on a CSP ℘(α), discriminates among the domains of values
of the variables involved in the constraint in the new ℘(α+1) and thus reduces the
occurrence of neighborhood interchangeability.

So, ∀d′k ∈ NI ′(Xi),∃dk ∈ NI(Xi), such that d′k ⊆ dk, where NI represents
the set of neighborhood interchangeable values for variable Xi in ℘(α) and NI ′,
the same, for variable Xi but in ℘(α+1).

1In the case of a k–ary constraint, k variables are affected be a constraint restriction and for
which we have to recompute the interchangeable values.
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For computation of the neighborhood interchangeable values of affected vari-
ables by the constraint restricted in ℘(α+1) there is no need for the entire DT
structure computed in the context of the precedent CSP ℘(α), but only its anno-
tations, thus the neighborhood interchangeable sets. As said before, we consider
the framework of binary CSPs; so, only two variables of the CSP ′ need neigh-
borhood interchangeability recomputation.

In the following, we present the algorithm which computes neighborhood in-
terchangeable values when we have a constraint restriction. It applies for a variable
Xi, where we denote as NI the sets of interchangeable values in ℘(α) before restric-
tion and as NI ′ the sets of interchangeable values in ℘(α+1), after the restriction.
Variable Xj is the variable imposed by the restricted constraint. For each domain
partition dk ∈ NI we construct a DT tree relative to imposed variable Xj .

Algorithm 14: Algorithm to compute neighborhood interchangeability for
constraint restriction in DynCSPs
Input: critical variable Xi, restricted variable Xj .

1: NI ′ ← φ
2: for all dk ∈ NI do
3: Create the root of the discrimination tree for current annotation dk

4: for all vi ∈ dk do
5: for all vj ∈ Xj do
6: if ∃ child node Xj = vj then
7: Move to it
8: else
9: Construct new node Xj = vj

10: Add Xi = vi to the one of the new annotations d′k
11: Go back to the root of the discrimination tree of dk.
12: NI’ ← include all d′k
13: return NI

Algorithm 14 can be straight forwardly extended for the k–ary constraints.
Algorithm 14 for constraint restriction can be extended in a straightforward

manner to a set of constraint restrictions. If more variables then Xj are imposed
to variable Xi we reconstruct the DT for each domain partition in former NI by
considering all the new imposed variables.

We study further in Subsection 5.4.3, if constraint restriction can imply par-
tial interchangeability.

5.4.2 NI Algorithm for Constraint Relaxation

Constraint relaxation has the reverse implications of constraint restriction. We
show in the following that by relaxing a constraint in a CSP ℘(α), the number
of neighborhood interchangeable values either stays the same or increases. We
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express this more formally in the following property, observed also by Choueiry
and Noubir in [28].

Property 5.2
Constraint relaxation of a CSP ℘(α) to a new problem ℘(α+1) can only increase
the number of interchangeable values.

So, ∀dk ∈ NI(Xi), ∃d′k ∈ NI ′(Xi) such that dk ⊆ dk′.

For computing neighborhood interchangeable values for the new ℘(α+1), we
have either the simple choice to reconstruct the DT structures for the affected
variables by the relaxation and thus, on a smaller neighborhood, or to modify the
old DT structures of ℘(α), if they where saved.

In the following we give the algorithms to recompute the old DT structure.
As by constraint relaxation, the neighborhood is modified by reducing its size,
we have to find algorithms which remove the nodes containing variables removed
from the neighborhood.

Algorithm 15 works in the following way:

• we parse the DT tree in a depth first search manner, by using Algorithm 16;

• when a node contains variables relaxed by the constraint, thus removed from
the neighborhood 2 we remove that node from the DT structure.

• the child nodes of the removed node have to be merged if they contain the
same neighborhood variable having the same value, we call these equal child
nodes.

• the merged child nodes are linked to the parent of the removed variable, see
Algorithm 17.

• the algorithm stops when all the occurrences of the constraint relaxation
variable are removed from the DT.

Algorithm 15: Algorithm to compute neighborhood interchangeability for
constraint relaxation in DynCSPs
Input: critical variable Xi, relaxed variable Xk.

1: Xp ← root of the DT(Xi).
2: while Xp not last DT node do
3: procedure ParseDT(Xp, Xk).

Algorithm 15 for constraint relaxation can be extended in a straightforward
manner to a set of constraint relaxations. Suppose that we have to compute the

2We remind here again that as we made the assumption that we work in the framework of
binary constraints, only one variable has to be removed from the DT tree; also the algorithm is
straightforward to extend for k–nary constraints.



114 Chapter 5. Interchangeability in Dynamic Environments

NI values for variable Xi and that a set Sc of constraints have been relaxed in
the CSP . We consider the set Sc of constraints which concern variable Xi directly
and thus, the variables which linked before by those constraints to variable Xi

have to be removed from the DT structure. Algorithm 15 can be easily modified
to remove all the variables in the set Sc from the DT structure while parsing the
DT.

These algorithms describe the computation for two consecutive CSPs in
the DynCSPs sequence; they can be extended in a straightforward manner to
reuse the NI values computation between more than 2 consecutive CSPs. Lets
consider a CSP ℘(α) and a CSP ℘(α+k); they can differ with a maximum number
k constraint restrictions or relaxations. For computing the NI values of variable
Xi for the new CSP ℘(α+k) we construct the set of variables which are relaxed, Sx,
and the set of variables which are restricted, Sc relatively to CSP ℘(α). Further
we apply the algorithm for constraint relaxations for the set Sx and the algorithm
for constraint restrictions for the set Sc and obtain the NI values for variable Xi

in the new CSP ℘(α+k).

Algorithm 16: procedure ParseDT(Xp, Xk)
1: if Xp = Xk then
2: remove Xp.
3: foundVk = true.
4: MergeEqualChilds(Xp).
5: for all child X ′

p of Xp do
6: if X ′

p is unvisited then
7: if X ′

p ! = Xp and foundVk then
8: Stop searching this branch.
9: else

10: procedure ParseDT(X ′
p, Xk).

11: Link the new merged child nodes to the parent of Xp.
12: else
13: for all child X ′

p of Xp do
14: if X ′

p is unvisited then
15: procedure ParseDT(X ′

p, Xk)

Algorithm 17: MergeEqualChilds(Xp).
1: identify equal child nodes of Xp.
2: merge equal child nodes.
3: for all merged child mXp do
4: procedure MergeEqualChilds(mXp).

In this section, we stated algorithms for the computation of neighborhood
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interchangeable values when a constraint is relaxed in the CSP . We need to have
the DT structures of the previous CSPs in which we remove the variables relaxed
by the constraints.

5.4.3 MDS Algorithm for Constraint Restriction

In the following, we study how the MDS Algorithm, see Chapter 2, Section 2.5.1
can be optimized in dynamic environments when the MDS set was already com-
puted in previous CSPs of the DynCSP sequence. We present the algorithm for
recomputing the MDS set for two consecutive CSPs in the sequence.

Property 5.3
Constraint restriction from a CSP ℘(α) to a CSP ℘(α+1) discriminate on the
values of one variable in the MDS set or might imply the spread of the MDS set
to set MDS′.

So, let Xk ∈ MDS be the variable constraint to the new variable Xj imposed
by the constraint restriction. Thus, d′k ⊆ dk for variable Xk in MDS after the
restriction if MDS does not spread; otherwise, MDS ⊂ MDS′.

Algorithm 18 for computing a minimal dependent set for a constraint restric-
tion from a CSP ℘(α) to a CSP ℘(α+1) follows these steps:

• if the variable Xj imposed by the constraint restriction discriminates among
the values to interchange of the critical variable, than variable Xj is included
in the MDS set and search for the new spread MDS set is continued by
Heuristic1 4 or Heuristic2 5, see Section 2.5.1;

• otherwise, Xj discriminates among the values of the domain partition dk

of variable Xk ∈ MDS to which it has constraint. If there exists values
vk ∈ dk which satisfies the whole domain of Xj then MDS stays the minimal
dependent set. In another case, the algorithm continues by Heuristic1 4 or
Heuristic2 5, see Section 2.5.1, for the spread set MDS + Xj .

Like in dynamic NI computation, Algorithm 18 can be extended in a straight-
forward manner for a set of constraints restrictions. One have to check how they
affect the interchangeable set of the critical variable or the domain partitions of
the other variables in the MDS and to increase the MDS set in an incremental
manner.

5.4.4 MDS Algorithm for Constraint Relaxation

Here we give an algorithm for recomputing the minimal dependent set (MDS)
when a constraint is relaxed in the CSP .

Property 5.4
Constraint relaxation from a CSP ℘(α) to a CSP ℘(α+1) can increase the domain
partition of one of the MDS variables or might even decrease the minimal set.
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Algorithm 18: Algorithm to compute MDS set for a constraint restriction
in DynCSPs
Input: critical variable Xc, restricted variable Xj .

1: if Xj constraint to the critical variable Xc then
2: construct reduced DT(Xc) relatively only to the neighborhood

N = {Xj}.
3: if values in the interchangeable set I of the critical variable do not

reach the same annotation then
4: SMDS ← SMDS ∪ {Xj}.
5: MDS ← Heuristic1(SMDS , Xc, I), see Algorithm 4.
6: else
7: MDS ← MDS.
8: else
9: construct DT(Xk) relatively only to the neighborhood N = {Xj},

where Xk ∈ MDS has constraint with Xj .
10: if ∃ values vk ∈ dk of variable Xk compatible with the entire domain

of the imposed variable Xj by the constraint restriction then
11: MDS ← MDS but with domain partition for Xk restricted to all

values vk.
12: else
13: SMDS ← SMDS ∪ {Xj}.
14: MDS ← Heuristic1(SMDS , Xc, I), see Algorithm 4.
15: return MDS.

So, let Xk ∈ SMDS be the variable which had a constraint relaxed to the
variable Xj . Then, the domain partition d′k in the new MDS is larger than the
old partition dk, dk ⊆ d′k for variable Xk or S′

MDS ⊂ SMDS , if Xk does not have
any constraint in the neighborhood of SMDS and ∃ domain partitions for any
variable in SMDS is compatible with the same values of Xk as well as the values
to interchange of the critical variable. Note that an MDS is represented by the
variables it contains and their domain partitions. We note that SMDS is the set
of variables in MDS, see MDS characteristics in Section 2.5.1.

Algorithm 19 computes the minimal dependent set after a constraint relax-
ation follows these steps:

• if the constraint relaxation concerns the critical variable, we compute the
discrimination tree for the critical variable and its values to interchange con-
sidering the neighbors of the MDS less the relaxed constraint variable. If the
values to interchange reach the same annotation, they become NI and the
algorithm stops returning as MDS only the critical variable. Otherwise, the
domain partitions for the rest of variables in the MDS set are recomputed
relatively to the reduced neighborhood.
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Algorithm 19: Algorithm to compute MDS set for a constraint relaxation
in DynCSPs
Input: critical variable Xi, relaxed variable Xj .

1: if relaxed constraint is to the critical variable Xc from variable Xj then
2: Construct DT(Xc, Neighbors(Xc) \ Xj)
3: if values to interchange from I reach the same annotation then
4: SMDS ← {Xc}
5: else
6: MDS ← critical annotation of the reduced JDT (SMDS , Xc, I)

relatively to the neighborhood N = NSMDS
\ {Xj}

7: else
8: if Xk after the relaxation to Xj do not have any other constraint to

the neighborhood of MDS then
9: A ← critical annotation of the reduced JDT (SMDS \ {Xk}, Xc, I)

relatively to the neighborhood N = {Xk}
10: if ∃d′p∀Xp ∈ SMDS\ {Xk} in A then
11: return reduced MDS ← A
12: else
13: MDS ← critical annotation of the reduced JDT(SMDS , Xc, I)

relatively to the neighborhood N = NSMDS
\ {Xj}

14: else
15: MDS ← critical annotation of the reduced JDT(SMDS , Xc, I)

relatively to the neighborhood N = NSMDS
\ {Xj}

16: return MDS.

• when another variable than the critical one has a relaxed constraint, we re-
compute the domain partitions of all the other variables in the MDS relative
to the reduced neighborhood. When, by constraint relaxation, the variable
in MDS does not have any other constraint to the neighborhood of MDS,
test if MDS stays minimal by removing the relaxed variable from the set.

Algorithm 19 can be straightforwardly extended for a set of constraint relax-
ations.

Also, as for neighborhood algorithm, Algorithm 19 can be easily adapted to
a set of constraint restrictions and relaxations.

5.5 Conclusions and Further Work

Many real–world problems are dynamic: in planning, unforseen events may ap-
pear while a plan execution, in scheduling, changes to the problem may occur
as the schedule is being executed, or in configuration, some components of the
configuration which are missing might need to be replaced with equivalent ones.
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DynCSP framework have been proposed to handle these kind of problems.
Specific algorithms for solving DynCSPs has been proposed or adapted from
their centralized version. In this chapter, we showed how algorithms for computing
neighborhood interchangeability and neighborhood partial interchangeability can
be adapted to dynamic constraint satisfaction problems solving.

Constraint restriction and constraint relaxation can cover the modeling of
any possible change in a DynCSP . For each of these operations we proposed
specific algorithms which can compute neighborhood interchangeable values. Fur-
ther more, we show that algorithms for computing minimal dependent sets which
characterize partial interchangeability in CSPs can be adapted in dynamic CSPs
when a constraint is restricted or relaxed. All these algorithms can be extended
in a straight forward manner for more simultaneous constraint restrictions or re-
laxations.

As by applying interchangeability algorithms we can compute how changes
in some variables propagate in the CSP and localize them to the set of affected
variables, the use of these algorithms in DynCSP is an appropriate and important
approach. The complexity of this algorithms depend highly on the CSP problem
structure as the experimental results described in Chapter 2, Section 2.5.1 has
shown. According to these results, one might expect that in low dense DynCSPs
the changes localize to one variable and thus neighborhood interchangeability al-
gorithms for constraint restriction or relaxation need to be applied. For more
dense DynCSPs, algorithms which computes minimal dependent sets of possible
changes can be used. The number of possible alternatives are increasing with the
number of resources/values in the variables domains.

It has been shown that interchangeability is improving search in static CSPs.
In the future work and important aspect to be studied is how interchangeability
can improve search in dynamic CSPs.

Moreover, an important issue to be studied in further work is a comparative
study between different solving techniques for dynamic CSPs such as interchange-
ability methods, arc consistency, constraint recording methods or local search in
order to establish their efficiency and completeness relatively to the problem struc-
ture.



Chapter 6

Generic Case Adaptation
Framework

In this chapter, we present a generic framework for the case adaptation process in
case based reasoning systems for which the knowledge domain can be represented
as constraint satisfaction.

Agent logic can not always and/or not entirely be properly captured and
expressed in terms of choice making, based on constraint satisfaction. For instance,
when values assignment to variables are not necessarily known a priori, it may be
more opportune to adopt other reasoning approaches, such as case–based reasoning
techniques. Moreover, case–based reasoning offers a means of applying learning
capabilities to agent reasoning.

6.1 Case Based Reasoning Context

Case–Based Reasoning (CBR) is a recent approach to problem solving and learn-
ing that has received a considerable amount of attention over the last few years.

The reliance on past experience, that is such an integral part of human prob-
lem solving has motivated the use of CBR techniques. A CBR system stores its
past problem solving episodes as cases which later can be retrieved and used to
help solve a new problem. CBR is based on two observations about the nature of
the world: that the world is regular, and therefore similar problems have similar
solutions, and that the types of problems encountered tend to recur.

Case–based reasoning is a problem solving paradigm that in many respects
is fundamentally different from other major AI approaches. Instead of relying
solely on general knowledge of a problem domain, or making associations along
generalized relationships between problem descriptors and conclusions, CBR is
able to utilize the specific knowledge of previously experienced, concrete problem
situations (cases). Case–Based Reasoning techniques solve problems by reusing,
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adapting and combining earlier solutions [58]. CBR based reasoners are able to
learn simply by storing cases. A new problem is solved by finding a similar past
case, and reusing it in the new problem situation. A second important difference
is that CBR also is an approach to incremental, sustained learning, since a new
experience is retained each time a problem has been solved, making it immediately
available for future problems.

In CBR terminology, a case usually denotes a problem situation. A previously
experienced situation, which has been captured and learned in a way that it can
be reused in the solving of future problems, is referred to as a past case, previous
case, stored case, or retained case. Correspondingly, a new case or unsolved case
is the description of a new problem to be solved. Case–based reasoning is – in
effect – a cyclic and integrated process of solving a problem, learning from this
experience, solving a new problem, etc, see references in [20], [88], [55].

Case representation focuses on what information is contained in a case. The
general purpose of a case is to enable future resolution of a new problem that is
similar in nature but different in context. The context of a case is characterized
by case’s indexes, which describe under what circumstances it is appropriate to
retrieve a case. A new problem is solved by retrieving one or more previously
experienced cases, reusing the case in one way or another, revising the solution
based on a previous case, and retaining the new experience by incorporating it into
the existing knowledge–base (case–base). For a given input problem the CBR cycle
is carried out in a common set of steps (see Figure 6.1), regardless the domain of
the application:

• retrieve – extract a case for a similar problem.

• reuse – evaluate how the case fits to the new situation.

• revise – adapt that problem to fit to the new situation requirements.

• retain – learn by remembering successes and failures as new cases.

This cycle is illustrated in Figure 6.1, see [1].
An initial description of a problem (top of Figure 6.1) defines a new case.

This new case is used to RETRIEVE a case from the collection of previous cases.
The retrieved case is combined with the new case – through REUSE – into a
solved case, i.e. a proposed solution to the initial problem. Through the REVISE
process this solution is tested for success, e.g. by being applied to the real–world
environment or evaluated by a teacher, and repaired if failed. During RETAIN,
useful experience is retained for future reuse, and the case base is updated by a
new learned case, or by modification of some existing cases.

As indicated in Figure 6.1, general knowledge usually plays a part in this
cycle, by supporting the CBR processes. This support may range from very weak
(or none) to very strong, depending on the type of CBR method. By general
knowledge we mean general domain–dependent knowledge, as opposed to specific
knowledge embodied by cases. For example, in diagnosing a patient by retrieving
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Figure 6.1: Case–Based Reasoning Process. The CBR Cycle

and reusing the case of a previous patient, a model of anatomy together with causal
relationships between pathological states may constitute the general knowledge
used by a CBR system. A set of rules may have the same role.

Based on the generic properties of Constraint Satisfaction Problems in mod-
eling a wide range of problems, we propose here a framework model in CBR
systems where the knowledge can be represented as CSPs. For this framework we
propose generic adaptation methods based on interchangeability algorithms.

6.2 Framework Model

We have developed a framework for case–based reasoning (CBR) based on con-
straint satisfaction problems (CSP ). As there are many generic techniques for
indexing and retrieval in CBR systems but no general ones for adaptation, the
main focus of our research is on case adaptation.

We consider a simpler CBR system as described in Figure 6.2. It consists of
two main steps: one for retrieving and indexing cases which we call recall, and the
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adaptation step based on interchangeability methods which modify the retrieved
case according to new demands and further evaluate the obtained case.

INDEX

RETRIVE

SELECT

RECALL

MODIFY

EVALUTE

ADAPT

(Interchangeability
Algorithms)

New Problem

CASE 
BASE

New
Solution

Figure 6.2: Case–Based Reasoning Process. Given an input problem a case is
retrieved from the case base for a similar problem; it is evaluated how this case
fits to the new situation, if there are differences the case have to be adapt and
return to the evaluation step; in the end if the new problem solved brings new
information a new case is created and added to the case base.

Several researchers have combined CBR and CSP , often with the goal of
supporting the adaptation process. A good example is COMPOSER [75], a research
prototype system aimed at exploring the use of CBR and CSP as applied to
engineering design. In COMPOSER, the case–based reasoner was augmented with
CSP techniques in order to achieve a more systematic adaptation process.

More similar to our approach is CADRE [54], a case–based reasoner for architec-
tural design where constraints restrict numerical relationships among dimensions.
CADRE introduced the concept of dimensionality reduction: before attempting to
adapt a case, it constructs an explicit representation of the degrees of freedom
available for adaptation. However, CADRE defined this approach only for numeric
constraints.

The first approach of the framework presented here consists in a layered
structure as shown in Figure 6.3.

The lowest level contains the CSP of the problem which represents the con-
figuration. Based on the CSP network the interchangeable values are computed
by determining the neighborhood interchangeable values of each variable and the
partial interchangeable values for sets of variables.

The CBR layer uses the interchangeable values, precomputed in the inter-
changeable layer, in the adaptation step. The application interacts directly with
the CBR level and with the interchangeability computation level for the adapta-
tion phase.
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CONSTRAINT SATISFACTION PROBLEM

INTERCHEANGEABILITY COMPUTATION

APPLICATION

CASE BASED REASONING

Figure 6.3: Graphic representation of the framework. The framework works based
on a layered structure. The case adaptation is realized based on the interchange-
ability applied on the constraint satisfaction problem which model the problem to
be solved (e.g. a configuration problem).

From the CBR perspective, constraint techniques are integrated in order to:
formalize the ill–defined process of adaptation, enhance and make more rigorous
case representation, develop a more systematic and/or efficient retrieval mecha-
nism, provide a domain independent, general formalization, of representing a CBR
task (e.g. retrieval, adaptation), make solutions easier to explore and help manage
design preferences.

6.3 Case Adaptation by Interchangeability

This section describes the concept of adaptation(interpretation) of a case in a
world model formulated as a CSP [68]. Assigning an interpretation to a case
allows it to be adapted to a new situation while maintaining its correctness.

Many approaches to case adaptation have considered all elements of a case
to be variable, thus making adaptation as complex as solving the problem from
scratch. Our approach, already used very successfully in CADRE, is to consider
adaptation as two steps:

1. construct a model of the case that contains only variables that are both
relevant and modifiable, we call this dimensionality reduction.

2. search for an adaptation in this reduced model.
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The closer the case is to the current problem, the smaller the model for
adaptation will be. Thus, adaptation will be much more manageable than if the
base model was used. Furthermore, explicit construction of an adaptation model
allows us to reuse cases in novel and creative ways.

The constraint satisfaction problem underlying all cases provides the knowl-
edge of admissible modifications of a case. The difficulty is how to exploit it to
compute models for adaptation. It is useful to consider separate mechanisms for
continuous and discrete variables.

X

X1

2
O

Figure 6.4: Graphic representation of two dimensional discrete space. Black
squares represent solutions given as cases. By applying neighborhood interchange-
ability, we can find similar solutions which differ in only one dimension, shown
graphically by horizontal or vertical arrows.

In the domain of discrete variables, the adaptation space is less obvious.
In [99], Weigel, Faltings and Choueiry looked for interchangeability in subprob-
lems induced from the original CSP by reducing the domains of a selected set
of variables. Usually it is not possible to compute a single dimensionality reduc-
tion which is valid across the entire design space. We show how the concept of
interchangeability allows us to nevertheless compute a dimensionality reduction
for discrete variables.

The concept of Interchangeability formalizes equivalence relations among ob-
jects or between values in a CSP problem.

The adaptation model for a case thus consists of all variables which the cus-
tomer might have to change, plus the interchangeability values which are applicable
to the case and define what can be changed.

We take as the example a problem with two discrete variables X1 and X2

as in Figure 6.4. Black squares represent solutions given as cases. By applying
neighborhood interchangeability, we can find similar solutions which differ in only
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one dimension, shown graphically by horizontal or vertical arrows.
However, this severely restricts the possibilities: we might also want to adapt

along a diagonal direction. This requires partial interchangeability: changes to a
variable value which also requires changes in another one.

Partial interchangeability can be considered as full/neighborhood inter-
changeability on a set of variables. Thus, it can be computed using the same
algorithms. The difficulty, however, is to know what sets of variables to consider.
In fact, the number of possibilities grows exponentially with the size of the con-
sidered sets, and a general search is clearly unmanageable.

A variable V affects the problem through the constraints that link V to
other variables in the problem, thus through V ’s neighborhood N(V ). As observed
in [28], if V is partially interchangeable with respect to S, then S must include at
least one node of N(V ). Thus, it makes sense to compute partial interchangeability
by considering increasingly large neighborhoods of V . In [41], Freuder gives an
efficient algorithm for computing neighborhood interchangeability values in this
context.

We will consider in the following a simple example of car configuration. The
variables which describe the car and the constraints between them are shown in
Figure 6.5.

Engine_type

Model_type

Nr_Doors ColorPaint Interior_type Fuel Transmission Interior_color Price

Figure 6.5: Graph of the constraint network. In the figure the squares represent
the variables of the constraint satisfaction problem linked by constraints.

Returning to our application, a case is constructed by assigning one solution
of the car configuration CSP to a well–defined buyer profile.

When a new buyer makes a request, the case database is browsed and the
new buyer profile is matched to the closest one. The corresponding solution of the
selected case is presented to the new buyer. For example, the system will have
the following interchangeable values of the variables in the solution of the case 15
(see Table 6.1). Possible changes for the current solution are presented in terms
of interchangeable values applied to the car configuration variables.

In Table 6.1 we present some results obtained for the constraint network con-
sidered in Figure 6.5. By applying the Neighborhood Interchangeability algorithm
for each variable we will get the corresponding neighborhood interchangeable val-
ues. For example, for the variable Model–type, the values Opel–Tigra, Opel–Corsa
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Attributes Values Neigh. Interch. Values Partial Interch. Values

Model–type Opel–Tigra Opel–Corsa, Opel–Sintra Opel–Omega/Engine–type
Opel–Astra/Color

Engine–type E–75HorseP – E–90HorseP/Model–type
Nr–Doors 3Doors – –

Paint Metallic – –
Color Beige Prune, Blue–Ber, Rouge Gris–Quarts/Model–type

Blanc/Model–type
Gris–London/Model–type

Interior–type Standard – –
Transmission Manual – –
Interior–color Diasit–Rouge Diasit–Blue, Houston–Blue –

Takana–Impala
Price 83000 – –

Table 6.1: Case 15 with interchangeability values. This example shows the inter-
changeable values of the variables in the solution of the case 15.

and Opel–Sintra are neighborhood interchangeable; that means that all the solu-
tions which contains one of these values will still remain solutions by exchanging
with one of the other two values. So, a buyer has the option to choose the desired
model from the displayed interchangeable values.

The results table also shows the partially interchangeable values obtained for
variable Model–type. To obtain these values, we applied the Minimal Dependent
Set algorithm for the critical variable Model–type and values to interchange Opel–
Omega and Opel–Astra. We obtained knowledge that the change spreads to the
MDS set S = {Engine–type}. In this case, when the buyer will change the value
of a variable, the values of all the variables from the set have to change. So if our
buyer would prefer the model Opel–Omega instead of Opel–Tigra the type of the
engine will change.

6.4 Case Adaptation

Case–based reasoning (CBR) for solving problems can be broken down into two
important steps: case retrieval and case adaptation [58]. While there are many gen-
eral methods for case retrieval, case adaptation usually requires problem–specific
knowledge and it is still an open problem. In this study, we propose a general
method for solving case adaptation problems for the large class of problems which
can be formulated as Constraint Satisfaction Problems(CSPs). This method is
based on the concept of interchangeability between values in problem solutions.
The method is able to determine how change propagates in a solution set and
generates a minimal set of choices which need to be changed to adapt an exist-
ing solution to a new problem based on the MDS Algorithm, see Chapter 2,
Section 2.5.1.
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Although it may be unrealistic to hope for generic methods to solve all adap-
tation problems, one class of problems which may be addressed is problems which
can be formulated as (CSPs). CSP problems are a generic paradigm and this
makes them a valuable class of problems for CBR adaptation methods. Solutions
which can be shown to apply to CSP type problems can be applied to a wide
range of problems.

This research work presents a method based on the concepts of interchange-
ability [41] for realizing case adaptation.

6.5 Adaptation Model Based on Constraint Satisfaction

In a previous section we introduced case adaptation based on constraint satisfac-
tion and gave a car configuration example.

In this section we present the design of the adaptation engine, where the
domain knowledge models a resource allocation problem using CSPs, see [26].

We recall that the resource allocation problem can be defined as a CSP in
the following way:

• tasks (T1, T2, . . . , Tn) are considered as the variables of the CSP where their
values are resources.

• domains of variables are sets of resources by which the tasks can be executed.

• constraints among variables denote mutual exclusion with respect to the
values. That means that two tasks overlapping in time cannot be carried out
by the same resource.

Since the main contribution of this work relates to the adaptation step of
the CBR process, retrieval is achieved using a simple metric which picks out the
closest previous case.

6.5.1 CBR Model

The framework presented in Figure 6.6 solves new resource allocation problems by
retrieving and adapting previous solutions. The problem solving process proceeds
as follows:

1. A new problem (defined in terms of tasks and resources to allocate as above)
arrives in the system.

2. The problem is matched to a single previous case.

3. The adaptation phase of the process therefore receives the following inputs:

• The solution of the retrieved case.

• The corresponding CSP retrieved from the CSP base according to the
tasks contained in the new problem.



128 Chapter 6. Generic Case Adaptation Framework

• The differences between the problem at hand and the one expressed in
the indexing parameters of the retrieved case1 (see Figure 6.6).

4. The adaptation module applies the minimal NPI algorithm (Section 2.6.2)
to this input to generate the closest solution to the new problem.

Adapted Solution

(user characteristics;
demanded tasks with
specific assigned resources)

Task_1:

.

.

.
Task_n: Resource_kn

Resource_k1
Task_2: Resource_k2

Indexing Parameters

Retrieved Case

Solution k:

New Requirements (Changes)

CSPs Base

New Case

(based on interchangeability
Adaptation Engine

)

(Task_x: Resource_y ....)

By direct user demands

New Problem

Case Base

Figure 6.6: Adaptation Model

The adaptation phase of the process therefore has an extra form of informa-
tion available to it which is the CSP model corresponding to the new problem.
The domain knowledge is represented as a CSP problem. It is this that allows
us to apply the interchangeability algorithms. Inferring a new solution from an
already known one by studying local changes based on interchangeability, have a
linear cost and can be used as a reliable adaptation method.

For the tasks with their corresponding exchanging values, provided by the
new requirements module, the adaptation engine applies the minimal dependent
set (MDS) algorithm, see Chapter 2, Section 2.5.1, in order to find the minimal
set of changes for adapting solutions. For an input of a single task, it might find
that the values proposed to be exchanged are NI, and thus the new solution keeps
all the same values for all the other tasks and exchanges only the NI values of
the task asked to be changed. In other cases the algorithm might find an MDS
set of variables which have to be changed in order to get a solution for the new

1The requirements can also be imposed by the user.
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requirements. Thus the constraints between the variables of the MDS set have
to be solved, while all the others variables of the solution stay unchanged. We
notice that the computational effort is here restricted to the MDS set and one
does not have to solve the whole problem from scratch. If the MDS set finding
algorithm does not find any MDS set, it means that there are no solutions for the
new requirements in the limited threshold of number of variables which might be
changed imposed in the MDS algorithm. In this situation, it might be necessary
to solve the problem from scratch.

In the CSP base we store the knowledge about the domain in the form of
CSPs. In the previous section, the car configuration system had only one CSP
which modeled all possible configurations [68]. For increasing the generality, we
now propose to represent the knowledge by several CSPs, which model different
resource allocation problems.

6.5.2 Example of Applying Neighborhood Interchangeability (NI)
to Case Adaptation

Using a resource allocation example we show how to use NI values and NPI values
for solution adaptation. As shown in Chapter 6, we define a generic framework
for the case adaptation process of case based reasoning systems for which the
knowledge domain can be represented as a constraint satisfaction problem.

As presented in previous work, the simplest way to apply interchangeability
to case adaption is to find NI sets of values for a variables of the CSP . Figure 6.7
shows an example of this for a resource allocation problem. It is inspired from
Choueiry and Noubir [28]. The resource allocation problem is modeled as a dis-
crete CSP in which the constraints are binary and denotes mutual exclusion with
respect to the values. The nodes of the CSP represents the tasks to be executed,
and their values are sets of resources by which these tasks can be executed. Arcs
link tasks that overlap in time and have at least one resource in common.

a, b, d a, b, c

d c, d, e, f

T1 T3

T2 T4

Figure 6.7: Simple example of how resource allocation is modeled as CSP

For example, in the CBR cycle a new problem might match a solution such
as:

Sol1 = {T1 = a, T2 = d, T3 = b, T4 = e},
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but impose the new requirements to allocate resource f to task T4. Normally
this requirement could have a knock on effect on all or many other choices but
in this case the values e and f of variable T4 are NI. Thus the exchange does
not affect the other variables and it stays a solution of the CSP (and hence a
valid solution to the whole problem). Formulation of the problem as a CSP and
applying the algorithm for detecting NI allows us to detect and prove this (which
may be non–trivial in other representations).

6.5.3 Example of Applying Partial Interchangeability (PI) to Case
Adaptation

Applying NI is useful but only allows single values to be exchanged in a solution.
This makes a very strong requirement that zero other choices are impacted by
changing an assignment. PI is a weaker form of NI and thus, more frequent in any
given solution since several interdependent choices can be varied together while
leaving the rest of the problem unchanged. The consequence is to isolate the effect
of modification to a subproblem of the CSP . It identifies qualitatively equivalent
solutions which can be generated by modifying the values of the indicated variables
only.

Since PI is more frequent in a solution, it increases the flexibility and utility
of the adaptation module. The example given in Figure 6.8 illustrates how the
adaptation module works when using PI interchangeability on the example from
Figure 6.7.

Adaptation Module

Finding minimalNPI - algorithm based on NPI interch.

solution: T1: a, T2: d, T3: b, T4: c
Input: new requirements - T1: b

Output: minimal NPI set: S = { (T1, {a,b}), (T3,{a,b})}

Retrieved Case X

New Requirements ( Changes)

T1: b

CSP: 

Adapted Solution

T1: b

T4: c
T3: a
T2: d

a b d 

c d e f

a b cd

T1

T4

T3T2

T4: c
T3: b
T2: d
T1: a

Solution:

T1: a
Indexing Parameters

Figure 6.8: Adaptation engine based on crisp CSPs.

The Adaptation module receives as input the solution of the retrieved case,
the CSP corresponding to the current solution and the requirements which it has
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to adapt according to the requirements from the user or not matching with the
indexing parameters. Indexing parameters contain previous user requirements; in
this example the requirements are the tasks with the corresponding resources. The
similarity measure used in computing the closest case is only a matching procedure
between the new requirements and the previous requirements which are now the
indexing parameters of the case. The differences between requirements, i.e. T1 = a
have to become T1 = b, gives the input for the MDS algorithm, Chapter 2,
Section 2.5.1, which computes the MDS set containing PI values.

As we can see in Figure 6.8, by ’adapting’ the task T1 from resource a to
resource b we have to also change the task T3 from resource b to resource a in
order to keep a solution, while all the other tasks remain the same. Change across
two variables is therefore detected while leaving the rest of the solution valid.
The system also works when several changes are required at once by using an
extended version of the MDS Algorithm as an input of several variables and their
interchangeable sets.

Once the MDS sets have been identified, the adaptation module can check
to see if it can find a valid solution that respects the changes imposed by the new
problem w.r.t. the retrieved case.

6.6 Soft Constraint Satisfaction for Case Adaptation

In Section 6.5 and in [69], we proposed a generic framework for case adaptation
for the domain of problems for which the knowledge domain can be represented
as crisp Constraint Satisfaction Problems (CSP ).

The CSP model can be applied to a wide range of problems as diagnosis,
planning, scheduling, robot control, and configuration but there are still many
real–life problems which cannot be precisely defined by using crisp constraints
only. Soft constraints allow the use of preference associated to either constraints,
or variables, or tuples within the constraints. We propose adaptation methods for
the domains of problems where the knowledge can be represented as a Soft CSPs.
Certain domains must be represented as hard constraint satisfaction problems in
order for the resulting solution to be functional. For example, in the configuration
of a product, the components have to match so that the product is functional.
However, many other real–life problems are more naturally handled by using soft
constraints [82, 15].

In Chapter 3 and in [10], we defined two notions: threshold α and
degradation δ for substitutability and interchangeability in Soft CSPs, called
((δ/α)substitutability/interchangeability). Fortunately, soft constraints also allow
weaker forms of interchangeability where exchanging values may result in a
degradation of solution quality by some measure δ. By allowing more degra-
dation, it is possible to increase the amount of interchangeability in a prob-
lem to the desired level, and thus the possibilities for adapting solutions.
δsubstitutability/interchangeability is a concept which ensures this quality.
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Ideally, one would like to compute values which are interchangeable over
global solutions, i.e., fully interchangeable, but this is computationally expensive.
In this way, the search of the values is computed in a local form, called neighborhood
interchangeability. Just as for hard constraints, full interchangeability is hard to
compute, but can be approximated by neighborhood interchangeability which can
be computed efficiently and implies full interchangeability. We have defined the
same concepts for soft constraints, and proven that neighborhood implies full
(δ/α)substitutability/interchangeability, see [9].

We propose here to apply these techniques in a CBR system where the
knowledge domain is represented as a soft CSP . By allowing a certain degrada-
tion delta of a case or searching over a certain threshold alpha one can try to
realize adaptation. So, we show how case adaptation can be realized based on
these concepts.

The main contribution is a generic model for the application of soft in-
terchangeability techniques to a large class of CBR adaptation problems (Sec-
tion 6.6.2). We present an example of a sales manager system for car configuration
domain (Section 6.6.1).

6.6.1 A CBR System for Product Configuration

We present here how the CBR system works for a configuration problem example.
However, the framework works in the same manner for all the problems which can
be represented as a CSP , i.e. as planning scheduling, diagnosis, etc.

We have applied and tested constraint satisfaction based methods in a case
based reasoning system which function as a sales manager. The case base reasoning
system contains cases which represent past sales and consist of a buyer profile and
the chosen product. The configuration of the product is modeled as a constraint
satisfaction problem. While admissible configurations can be precisely specified as
a constraint satisfaction problem, each customer has particular needs that remain
largely unformalized. Case–based reasoning maps properties of the customer to
these implicit customer needs and product configuration that would fit these needs.
Constraint satisfaction techniques can then be used to adapt the proposed solution
by the CBR system to the particular customer requirements and preferences.

In Figure 6.9, we represent the general framework of our system. When a
new customer makes a new demand, the sales system will search in the case base
for similar cases using of buyer profile for case indexing and retrieval.

Each case contains:

• A buyer profile containing:

– characteristics: e.g. age, family status, using purpose for the car, budget
limits in the car investment,

– particular preferences/requirements for the car.
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Figure 6.9: An electronic sales manager based on a CBR system.

• The chosen product contains the configuration of the car as a constraint sat-
isfaction problem solution where each component of the car has assigned a
value consistent with all the other components. The components are repre-
sented as variables of the CSP , according to the constraints between them.

The retrieved cases are sent to the adaptation engine which communicates
with the buyer for further refinement of the demands. The adaptation engine
uses interchangeability methods in order to adapt the solutions of the product
configuration. The domain knowledge is represented as a constraint satisfaction
problem. By interacting with these two modules the adaptation engine reaches the
new solution which together with the current buyer profile is inserted in the case
base. The sale order is then sent for processing.

In our example we present three models for representing the knowledge, as
shown in Figure 6.10:

• The first example represents the configuration of the product modeled as
a crisp CSP where the constraints are either satisfied or not by a tuple of
values. In order that the product be functional all the components have to
be compatible with one another.

• In the second example, we model the price configuration for the cost of the
product as a weighted CSP . The weights on the tuples of values represent
the cost for each component (by unary constraints) and the costs for combi-
nations of components respectively (by binary constraints).

• The last example represents the delivery of the product modeled as a fuzzy
CSP where the preferences on the tuples of values represent the delivery
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Figure 6.10: Domain knowledge as Constraint Satisfaction Problems.

time of the components and the combinations of components according to
the constraints between them.

While the configuration of the product has to be expressed with crisp con-
straints such that the product to be feasible, modeling the price and delivery time
with soft constraints allows for the use of customer preferences. The identified
solutions are then ranked according to the optimization criteria used by the soft
constraint system.

6.6.2 Adaptation Model with Soft Constraint Satisfaction

In Section 6.5, it is shown how the adaptation process is realized through the
use of NI interchangeability and PI interchangeability characterized by MDS
sets. Now, we propose adaptation for the problems which are represented as soft
constraint satisfaction problems and we use δ

αinterchangeability to adapt solutions.
In this model, the adaptation is realized by interchanging values of one or a subset
of Soft CSP variables by allowing a certain degradation of the solution.

The adaptation model is illustrated here through an example application to a
generic product configuration problem. The configuration of the product is defined
as a CSP where:

• the components of the product are expressed as the variables of the CSP ;

• the domains of the CSP are the sets of values that the components can take;

• the constraints among variables denote the dependency between the compo-
nents in order that the product be functional.
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In order to model this product configuration example, we have used two
representative forms of Soft CSPs: the weighted one to model the price and the
fuzzy one to model the delivery time. So, for modeling the price of the product,
the modeling of the CSP is the same as for the crisp constraint case, only that we
have cost for each value assignment of each component (unary constraint) and for
each tuple combination over the constraints (binary constraint). By the use of the
semiring operations for weighted CSP , < �+, min,+,+∞, 0 >, see Chapter 3, for
constraint combination we will have to add the costs in order to obtain the final
price.

For delivery time we have used the fuzzy CSP model, where the semiring is
defined as < �+,min,max,+∞, 0 > 2, see Chapter 3.

The Architecture of the Adaptation Framework

The architecture of the system is domain–independent; its domain knowledge
comes from three external sources: a case library, domain knowledge represented
as CSP and user requirements, see Figure 6.11. Our sales manager system (shown
in Figure 6.9), finds the appropriate product for a new buyer by retrieving cases
and adapting their product configurations according to the new requests. The
main contribution of this work relates to the adaptation step of the CBR process.
Retrieval is managed by using a comparison metric over the buyer profile relative
to profiles contained in cases and picks out the closest previous cases.

As in Figure 6.11, the adaptation module receives the retrieved cases from
the case base. The module interacts with the user for specific, personalized re-
quirements and with the domain knowledge for making consistent adaptations.

The adaptation process proceeds as follows, see Figure 6.11:

• propose the retrieved cases to the user in order to make a choice;

• ask for the user for:

– specific requirements on the selected case;

– a certain price threshold or an allowed degradation of the price (specified
as certain limits);

– a delivery time threshold or an allowed degradation of the delivery time
(specified as certain limits);

Example – Applying Degradation and Threshold for Adapting Cases

We now give examples of how degradation and threshold apply to solution adap-
tation when the domain knowledge is represented as a Soft CSP .

2Usually the fuzzy CSP is represented by the semiring < [0, 1], max, min, 0, 1 >, but for
modeling this example we had chosen a similar one which uses the opposite order.
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Figure 6.11: Adaptation engine based on Soft CSPs.

The product catalog can represent the available choices through a Soft CSPs,
as shown in Figure 6.10. By different representations of the semiring, the CSP
represents different problem formulations. Thus, in order to model the cost of
the product a weighted CSP representation might be the most appropriate. In a
weighted CSP , the semiring values model the cost of different components and
their integration. Formally, the semiring operations and values in a weighted CSP
are: < �+, min,+,+∞, 0 >. This allows one to model optimization problems
where the goal is to minimize the total cost of the proposed solution. The cost of
the solution is computed by summing up the costs of all the constraints. The goal
is to find the n–tuples (where n is the number of all the variables) which minimize
the total sum of the costs of their subtuples (one for each constraint).

In Figure 6.12, we present a solution adaptation example of the product
configuration relative to its delivery costs. The product is modeled in terms of a
weighted CSP as in Figure 6.10. The cost of the current solution is 18 and the user
request is to update the value of the engine, here represented by variable E. By
allowing a degradation of the solution with δ = 0 the solution updates the variable
E to value s and its cost decreases to 17. By allowing a degradation of δ = 4 the
current solution can adapt its variable E either to value s or d where the cost
decreases to 17 or increases to 22 respectively. Thus, among the values of variable
E, we find that for degradation δ = 0 , value s is 0substitutable to values l and
d, and value l is 0substitutable to d. For a degradation δ = 1, values s and l are
1interchangeable and 1substitutable to d, respectively. By allowing a degradation
δ = 4, values s and l are 4interchangeable, values l and d are 4interchangeable and
value s is 4substitutable to value d. For a degradation δ > 5 all the values of E
variable are δinterchangeable.



6.6. Soft Constraint Satisfaction for Case Adaptation 137

Price Configuration - Weighted CSP

Degradation of the solution by    - interchangeability

Threshold solution by    - interchangeability

δ

α

δ = 0

Adapted solutions

Case to Adapt

Car Configuration: 
 
M = m 
E = l 
T = m 
A = y 

Buyer Profile

Case to Adapt

Car Configuration: 
 
M = m 
E = l 
T = m 
A = y 

Buyer Profile

Car Configuration: 
M = m 
E = s 
T = m 
A = y 

Car Configuration: 
M = m 
E = d 
T = m 
A = y 

Car Configuration: 
M = m 
E = s 
T = m 
A = y 

δ = 4

α = 0

α = 18

Car Configuration: 
M = m 
E = s 
T = a 
A = y 

Car Configuration: 
M = m 
E = d 
T = m 
A = y 

Car Configuration: 
M = m 
E = s 
T = m 
A = y 

Solution Cost = 17

Solution Cost = 17
Solution Cost = 18

Solution Cost = 22

Solution Cost = 18

Solution Cost = 17 Solution Cost = 22

Solution Cost = 17

Figure 6.12: Example of solution adaptation based on δ and α interchangeability
where the knowledge domain is represented as a weighted CSPs.

When searching for solutions to a soft CSP , it is possible to gain efficiency
by not distinguishing values that could in any case not be part of a solution of
sufficient quality. In αinterchangeability, two values are interchangeable if they
do not affect the quality of any solution with quality better than α, called the
threshold factor. In our price modeling example, see Figure 6.12 we can see that
for a threshold α = 0, the solution can be updated for the variable E with all the
other values of its domains as all its values are 0interchangeable; this is explained
by the fact that since there are no solutions better than α = 0, by definition all
the elements are interchangeable. For a certain threshold α = 18, values l and d
are 18interchangeable and value s can substitute value l or value d. And for higher
α, value s can substitute value l or value d and value l can substitute value d.

For modeling the delivery time of the car we had used as optimization cri-
terion a fuzzy CSP . Fuzzy CSP associate a preference level with each tuple of
values. This level is usually between 0 and 1 and expresses how much the tuple
of values satisfy the constraint, where 1 represents the best value (that is the
tuple is the most preferred and complete satisfaction) and 0 the worst (no satis-
faction). The semiring < [0, 1],max,min, 0, 1 > models the fuzzy CSP type, see
Chapter 3. In our example, we had modeled the delivery time with the semiring
< �+, min,max,+∞, 0 > which is similar to the fuzzy one, but uses an inverse
order. Let us call it opposite fuzzy. Delay in delivery time is determined by the
time taken to obtain components and to reserve the resources for the assembly
process. For the delivery time of the car, only the longest delay would matter. In
Figure 6.13, the solution we have to adapt has a delivery time of 7 days but the
user would prefer to change the engine type of the car. For a degradation of the
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Figure 6.13: Example of solution adaptation based on δ and α interchangeability
where the knowledge domain is represented as a Fuzzy CSP .

solution δ = 0, we can adapt the solution only by value s for variable E, where the
delivery time goes to 5 days. By allowing a higher degradation of the solution to
δ = 10, there are two possible solution adaptations: when variable E takes value
s the delivery time stays the same, while when it takes value l the delivery time
increases to 10 days. For δ = 0, value s is 0substitutable for values l and d of
variable E, while for δ = 7, values s and d are becoming 7interchangeable. For
δ = 10, all values of variable E are 10interchangeable.

Computing adaptation by αinterchangeability for this fuzzy example allows
the adaptation of the solution, see Figure 6.13, to value s and as well as to value l of
variable E. This happens because all the values are interchangeable for a threshold
α = 0. For a threshold α = 7, values l and d stay interchangeable, but value s can
only substitute value l and value d, while for higher values of α threshold, value s
can substitute values l and d and only value d can substitute value l.

6.7 Related Work

We proposed a generic framework to realize case adaptation for the domain of
problems which can be represented as crisp or Soft CSPs.

There are some other approaches to viewing the adaptation problem as a
constraint satisfaction problem. One of them was published by Purvis and Pu
in [76] for a case–based design problem where the adaptation process is based on
the constraints over discrete CSPs. Their methodology formalizes the case adap-
tation process in the sense of combining multiple cases to achieve the solution of
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the new problem, by applying repair–based CSP algorithm proposed by Minton
in [80]. This method relies only on the knowledge accumulated in the case base
whereas the interchangeability–based method proposed by us also considers infor-
mation offered by the domain knowledge formulated as a CSP . The approaches
are different because, in the method proposed by Purvis and Pu [76] the con-
straints between specific values of the variables are stored in the case, while the
adaptation method based on interchangeability proposed by us stores in the case
only the solution of the new problem, while the constraints between variables are
held in an external module which contains the domain knowledge. We believe that
our approach gives more flexibility to the adaptation module, but in the future it
would be interesting to study how the two methods can be combined for improving
the adaptation process.

By extending the framework to the Soft CSP domain and thus, allowing
preferences, the flexibility of the framework is further improved.

Another approach to adaptation with constraints where the solution of a new
problem is built by satisfying the new constraints and by transforming a memo-
rized solution was published by Hua, Faltings and Smith in [54]. They proposed a
case–based reasoner for architectural design where constraints restrict numerical
relationships among dimensions. This is called CADRE. CADRE introduced the
concept of dimensional reduction: before attempting to adapt a case, it constructs
an explicit representation of the degrees of freedom available for adaptation. The
adaptation method based on dimensional reduction has been tested successfully in
the IDIOM project [53]. However, CADRE defined this approach only for numeric
constraints. In our approach we study the domain of discrete CSP which cannot
be solved by a numeric approach.

In the domain of discrete variables, the adaptation space is less obvious.
We proposed here a method based on interchangeability for domains of problems
which can be expressed as crisp and soft CSPs which localize changes in discrete
spaces and thus offers a reliable method for determining the closest solution.
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Conclusions

This chapter outlines the main results and contributions of this study.

Important features of intelligent agent systems are the reasoning methods
applied during their decision process. There are many decisions which an agent
has to take: either externally, in reaction to the environment such as what event
to react to, or internally, for decisions such as which goal to pursue, how to pursue
the desired goal and when to suspend/abandon the goal, or change to another
goal.

The decision making process can be naturally expressed in terms of constraint
satisfaction problems.

Moreover, agents need to construct or adapt plans for achieving their goals.
When an event from the environment occurs the agent looks for relevant plans,
which can respond to this type of event. For each relevant plan, the agent examines
how appropriate the plan is for the current situation and then the agent selects,
adapts and starts executing the most appropriate plan found.

Planning is one of the reasoning methods which can be solved through con-
straint satisfaction methods. Our specific interest focused during this research on
adaptation techniques. The adaptation process can be a complex one and some-
times might require the same search effort as solving the problem from the scratch.
In this work we have studied how and when it is appropriate depending on the
problem structure to adapt already known plans/solutions based on a constraint
satisfaction technique called interchangeability. Interchangeability is a general con-
cept for formalizing and breaking symmetries in CSPs. We focus on partial and
soft interchangeability in discrete CSPs, algorithms for interchangeability com-
putation and its application to problems such as case adaptation.
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7.1 Contributions

Constraint satisfaction problems techniques have proven to be a generic framework
for modeling a wide range of problems such as configuration, diagnosis, scheduling,
decision making and planning.

Constraint satisfaction framework is appropriate for modelling and solving
agent reasoning problems such as decision making and planning. We focus our
research on adaptation process in constraint– and case–based reasoning systems
and its application in software agent.

For realizing adaptation, we have studied constraint satisfaction methods
based on interchangeability for solutions adaptation and update.

The main topics and aspects driven in this research are:

• How partial interchangeability can be approximated based on local neighbor-
hoods;

• Definitions and algorithms for interchangeability in soft CSPs;

• Interchangeability computation in distributed environments based on collab-
orative agents;

• Solution adaptation in dynamic environments;

• A generic framework for case adaptation based on constraint satisfaction
techniques.

In the following we discuss the contribution for each of these aspects and the
obtained results.

7.1.1 Partial Interchangeability

The major contribution in Chapter 2 consists of novel algorithms for computing
minimal, and globally minimum dependent sets which localize change in CSP
solutions.

We gave a sound algorithm for computing a minimal set of variables which
might have to change to allow interchange in the critical variable. The algorithm for
computing this minimal dependent set (MDS) is a constructive algorithm based
on discrimination tree structures; it searches incrementally for the dependent set,
which enlarges with the spreading of the change in the CSP . We have proven that
for a given interchange there can be many minimal dependent sets. The MDS
algorithm finds one of them based on heuristics which minimize the number of
variables to be included in the further dependent set. As the MDS algorithm
finds the minimal dependent set using heuristic search, it is not able to find the
global minimum.

There are multiple ways a change can propagate and while there are many
minimal dependent sets only few are minimum ones. We gave a complete and sound
algorithm for finding the minimum dependent sets among the minimal ones. The
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completeness of this algorithm trades off on efficiency but we show that it can
be used efficiently in sparse CSPs up to a certain neighboring distance from the
critical variable.

Otherwise, the minimal dependent set algorithm can be used and by applying
this algorithm to randomly generated problems, we have gained an understanding
of the existence and size of minimal dependent sets according to the problem
structure:

• Strong dependency on the density parameter of the CSP , where MDS are
more frequent in CSPs with high density. This complements the neighbor-
hood interchangeability which occurs more often in sparse CSPs.

• Weak dependency on the domain sizes where the domain partitions of vari-
ables in the MDS set increases with the number of resources.

On the basis of this work we believe that partial interchangeability charac-
terized by minimal and minimum dependent sets has potential in practical appli-
cations, i.e. for identifying classes of equivalent solutions as a basis for adaptation.
Moreover, agent reasoning can use these adaptation techniques to adjust agent
plans and improve the decision making process.

7.1.2 Tuple Interchangeability

We defined a new concept of partial interchangeability which we call Neighborhood
Tuple Interchangeability (NTI) which characterizes partial interchangeability bet-
ter then the minimal/minimum dependent sets, as it guarantees that the assign-
ments are valid among the variables of the dependent set. We gave a sound and
complete algorithm for finding equivalent partial solutions, which we call neigh-
borhood interchangeable tuples. This algorithm is based on the concept of Neigh-
borhood Tuple Interchangeability, which turns out to be more useful for adapting
solutions than Neighborhood Partial Interchangeability as it can find already con-
sistent interchangeable tuples for variables in the dependent set, if they exist.

The NTI method can improve the solution adaptation process in agent rea-
soning with more precision. Where dependent sets are just identifying the set of
variables and their domain partitions to which the change localize, without guar-
antee of solutions inside this set, NTI can find already consistent tuples of the
dependent set to be interchanged.

We showed that NTI can approximate correctly PI and gave the algorithm
for its computation. We proved that if a set is found not to be NTI, then it can also
be guaranteed to not be partially interchangeable at all. So, we have a complete
method to compute partial interchangeable values, however it does not necessar-
ily find the smallest NTI dependent sets. The algorithm can be extended in a
straightforward manner to be complete by realizing exhaustive search among all
the alternatives, but it might trade off too much effectiveness for its completeness.

In experimental evaluation on randomly generated problems, we found that
in general most values seem to become interchangeable with dependent sets of
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manageable size, where they increase with the CSP density. While the complexity
of our methods is exponential in the size of the dependent sets, we do not expect
this to be a great problem in practice.

7.1.3 Definitions and Algorithms for Soft Interchangeability

We have defined interchangeability for the Soft CSP framework and we have
given polynomial algorithms for its computation. In soft CSP , we can relax the
symmetries based on the semiring values. We have defined two new forms of more
relaxed interchangeability based on soft CSP properties. α–interchangeability uses
threshold α in order to eliminate distinctions that would not interest us anyway,
while δ–interchangeability specifies how precisely we want to optimize our solution.

We have shown that all the properties of classical CSPs can be extended to
the soft case. We have studied the occurrence of (δ/α)Neighborhood Interchange-
ability (NI) and (δ/α)Neighborhood Partial Interchangeability (NPI) depending
on the problem structure and we have evaluated how their occurrence depends on
the values of threshold α and degradation δ. In our tests, we evaluated also how
much local NI corresponds to Full Interchangeability (FI). The experimental facts
showed that there is high occurrence of (α)NI and (δ)NI interchangeability around
optimal solutions of Soft CSPs. Thus, these algorithms can be used successfully
in solution update applications as we showed for example in case adaptation.
Moreover, we also showed that NI interchangeability can well approximate FI
interchangeability.

We believe that the results prove the reliability for using (δ/α)interchange-
ability for practical applications.

7.1.4 Interchangeability Solving Collaborative Agents in Distrib-
uted Systems

When the CSP problem knowledge is distributed among different locations, the
centralized algorithms for its solving can no longer be applied. New algorithmic
techniques had to be proposed for solving CSPs when they are distributed.

For the domain of distributed CSPs we propose algorithms for comput-
ing neighborhood and partial interchangeability. These algorithms are based on
collaborative agents which share the work required to solve the CSP , and its
interchangeability computation respectively.

We proposed distributed algorithms for the computation of neighborhood
interchangeability and partial interchangeability characterized by the dependent
sets. Distributed CSPs computing involves a number of new issues to be con-
sidered such as: how the tasks can be usefully divided among agents, how one
agent can exploit the knowledge generated by the others, and how the agents
communicate with each other. Addressing all these issues we have shown that the
computation of interchangeability, neighborhood or partial, is possible in distrib-
uted environments.
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7.1.5 Interchangeability Solving in Dynamic Environments

Significant research work has involved static CSP where all the knowledge about
the problem including variables, their domain of values and the constraints be-
tween them, are known before the computation starts and do not change with
time. This is not the case for many real world applications in which all the CSP
knowledge may change in time. Also, for software agents environments, the need
to have all the problem domain knowledge before the computation begins is too
strict.

These aspects motivated our research for interchangeability algorithms in
dynamic CSPs. Adapting previously known solutions is a major issue for CSPs
in dynamic environments, since one might not need to compute the problem from
scratch when a solution is already known and can be adapted to the changes in
the CSP , i.e. a constraint restriction or relaxation.

We have shown how neighborhood and partial interchangeability can be com-
puted in dynamic CSPs environments. Moreover, we present algorithms for adapt-
ing solutions in dynamic CSPs. Based on the results obtained in Chapter 2, we
know when it is appropriate to adapt solutions rather than computing it from
scratch based on the CSP problem structure.

7.1.6 Generic Case Adaptation

When an agent needs to recall the approach it has used in solving previous prob-
lems, another reasoning technique such as case based reasoning can be applied.
When a new problem has to be solved, the closest known one is retrieved and
adapted to the new requirements. The adaptation process proves to be difficult
and domain dependent. In this part of the work we addressed problems regard-
ing the adaptation process in case based reasoning systems where the knowledge
domain can be represented as constraint satisfaction. Based on constraint satis-
faction and interchangeability properties we proposed a generic method for case
adaptation.

We presented how NI and NTI interchangeability forms can be used for
adapting solutions during the case adaptation process.

Moreover, we extended our generic tool for the knowledge domains which
can be represented as Soft CSPs. Based on interchangeability concepts defined in
Soft CSPs, we provided methods for solution adaptation.

We presented how the adaptation based on interchangeability applies to a
CBR system for product configuration. However, the framework works in the same
way for all the problems which can be represented as CSP . The CBR system we
presented functions as a sales manager system, which contains cases representing
past sales and consisting of buyer profiles and the chosen product. Admissible
configurations can be precisely specified as CSPs, but each customer has partic-
ular needs that remain largely unformalized. We use CBR to map properties of
the customer to these implicit customer needs and product configurations that fit
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them. The configuration of the product is modeled as a CSP . Interchangeability
and constraint satisfaction techniques are used to adapt the proposed solution
by the CBR system to customer requirements and preferences. We use standard
CSPs to model strict constraints of product configuration where costs and pref-
erences are modeled with soft CSPs. For adapting a case we apply all form of
interchangeability.

By grouping together constraint satisfaction methods for adapting solutions
over continuous domains based on dimensionality reduction and over discrete do-
mains based on interchangeability, where we provide methods for hard and soft
constraints as well, we can provide a generic tool for case adaptation.

7.2 Further research

In future work, the algorithms for computing partial interchangeability can be
further improved or extended in order to be applied in more complex agent envi-
ronments. Some of the goals are:

• To study efficiency and applicability of minimal/minimum dependent set
algorithms for larger inputs, i.e. sets of variables and their corresponding
sets of values to be interchanged. When an agent needs to adapt a solution
not only for one critical variable but many, new efficient algorithms need to
be found.

• To study how the occurrence of interchangeability is affected by the evolution
of a dynamic CSP and how the search in dynamic CSP can be improved by
interchangeability. More effort should be given to studying how interchange-
ability aspects for solution location are affected in an agent environment
which evolves dynamically.

• To study how interchangeability improves search in Soft CSPs, algorithms
for computing NTI in Soft CSPs and their application in distributed envi-
ronments.

Many possible applications of interchangeability are mentioned in Chapter 1.
In future research, we believe that partial interchangeability can be further ex-
ploited in:

• Problem abstraction and reformulation, where interchangeable tuples or a
critical variable and its dependent set for making its domain interchangeable
provide meaningful meta–variables.

• Distributed problem solving, where it is possible to limit the set of agents
that a change has to be coordinated with, and also to make local changes so
that they do not spread through the entire problem.

• Structuring and classifying solution based on the dependent sets where the
changes are localized.
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• Interactive systems, where it is possible to show what parts of a solution
might be affected by a local change.

7.3 Final Conclusion

Techniques for agent reasoning based on constraint satisfaction methods have been
studied in this work. Constraint satisfaction is an appropriate technique for mod-
eling decision making and planning processes in agents. Moreover, agents need to
adapt their plans for achieving goals. This research work concerns solution adap-
tation methods based on interchangeability in constraint satisfaction problems.

Most work in constraint satisfaction has focused on efficiently generating solu-
tions. However, it is also interesting how solutions can be adapted and abstracted.
Interchangeability is an interesting concept for this. In this research, we have ad-
dressed two open problems: we have given a practical algorithm for approximating
partial interchangeability, and we have given definitions and algorithms for inter-
changeability in soft CSP . Both are useful for case adaptation and abstraction of
solution spaces in general.
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